The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Photocatalytic oxygenation of anthracenes and olefins with dioxygen via selective radical coupling using 9-mesityl-10-methylacridinium ion as an effective electron-transfer photocatalyst.

Visible light irradiation of the absorption band of 9-mesityl-10-methylacridinium ion (Acr+-Mes) in an O2-saturated acetonitrile (MeCN) solution containing 9,10-dimethylanthracene results in formation of oxygenation product, i.e., dimethylepidioxyanthracene (Me2An-O2). Anthracene and 9-methylanthracene also undergo photocatalytic oxygenation with Acr+-Mes to afford the corresponding epidioxyanthracenes under the photoirradiation. In the case of anthracene, the further photoirradiation results in formation of anthraquinone as the final six-electron oxidation product, via 10-hydroxyanthrone, accompanied by generation of H2O2. When anthracene is replaced by olefins (tetraphenylethylene and tetramethylethylene), the photocatalytic oxygenation of olefins affords the corresponding dioxetane, in which the O-O bond is cleaved to yield the corresponding ketones. The photocatalytic oxygenation of anthracenes and olefins is initiated by photoexcitation of Acr+-Mes, which results in formation of the electron-transfer state: Acr*-Mes*+, followed by electron transfer from anthracenes and olefins to the Mes*+ moiety together with electron transfer from the Acr* moiety to O2. The resulting anthracene and olefin radical cations undergo the radical coupling reactions with O2*- to produce the epidioxyanthracene (An-O2) and dioxetane, respectively.[1]


WikiGenes - Universities