The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Dioxetane     dioxetane

Synonyms: AG-G-57775, AC1L3TUM, CTK2F8423, 1,2-dioxetane, 6788-84-7, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of dioxetane

 

High impact information on dioxetane

  • Our findings also show that the formation of dioxetane intermediates through peroxyradical cyclization is not required to achieve oxidative fragmentation of PUFAs [3].
  • Neither an endoperoxide nor a dioxetane intermediate was detected by low-temperature NMR even at -78 degrees C. A product (A) with an oxidized imidazole ring was the only major product detected at room temperature; this compound could be isolated by low-temperature column chromatography and was characterized by (1)H and (13)C and mass spectroscopy [4].
  • This radical reacts with molecular oxygen, producing a peroxyl intermediate radical that, via a putative dioxetane intermediate, promotes formation of benzophenone as the main final product of this reaction, detected by high-performance liquid chromatography coupled with tandem mass spectrometry [5].
  • C-525 sensitized CL only in the systems where peroxyl radical and/or triplet excited carbonyls are produced, the mechanism of CL sensitization apparently is energy transfer from the excited triplet carbonyls formed in the peroxyl radical self-reaction via Russell's mechanism or by dioxetane decomposition [6].
  • It was found that a chemiluminescent detection system employing an alkaline phosphatase activated dioxetane in the presence of chemiluminescent enhancers provides a high degree of sensitivity in hybridization protocols with a significant savings in overall filter processing time [7].
 

Biological context of dioxetane

  • Applications of dioxetane chemiluminescent probes to molecular biology [8].
  • A model based on dioxetane chemiluminescence is proposed to explain the observed kinetics [9].
  • The difference in light-emission kinetics between the Ca(2+)-triggered bioluminescent reaction of the photoprotein aequorin (AEQ) and the alkaline phosphatase (ALP)-catalyzed chemiluminescent hydrolysis of dioxetane aryl phosphate substrates was exploited for the analysis of both alleles of biallelic polymorphisms in a single microtiter well [10].
  • Formation of 7,8-dihydro-8-oxoguanine in the 1,2-dioxetane-induced oxidation of calf thymus DNA: evidence for photosensitized DNA damage by thermally generated triplet ketones in the dark [11].
  • The varieties of 1,2-dioxetane substrates available provides assay versatility, allowing optimization of assay formats with the available instrumentation, and are ideal for use in gene expression assays performed in both biomedical and pharmaceutical research [12].
 

Anatomical context of dioxetane

 

Associations of dioxetane with other chemical compounds

 

Gene context of dioxetane

  • The spectroscopic profile of the light emission is distinguishable from (a) singlet oxygen, (b) triplet carbonyls from dioxetane and alpha-hydroxyperoxyl radicals, and (c) biacyl triplet formed by the coupling of two acyl radicals [18].
  • BGR was evaluated using the chemiluminescent substrate, AMPGD (3-¿4-Methoxyspiro[1,2-dioxetane-3, 2'-tricyclo(3.3.1.1(3,7))decan]-yl¿phenyl-b-D-galactopyra nos ide), a phenylgalactose-substituted 1,2-dioxetane compound [19].
  • The assay was based on the reaction of beta-galactosidase enzyme from E. coli with a phenylgalactosidase-substituted dioxetane substrate [20].
  • Effects of some trivalent metal ions on the fluoride-induced chemiluminescence from a phenylphosphate-substituted dioxetane Lumigen PPD [21].
 

Analytical, diagnostic and therapeutic context of dioxetane

References

  1. Detection of parvovirus B19 DNA in bone marrow cells by chemiluminescence in situ hybridization. Musiani, M., Roda, A., Zerbini, M., Gentilomi, G., Pasini, P., Gallinella, G., Venturoli, S. J. Clin. Microbiol. (1996) [Pubmed]
  2. Porous silicon-based biosensor for pathogen detection. Mathew, F.P., Alocilja, E.C. Biosensors & bioelectronics. (2005) [Pubmed]
  3. Oxidative fragmentation of hydroxy octadecadienoates generates biologically active gamma-hydroxyalkenals. Sun, M., Salomon, R.G. J. Am. Chem. Soc. (2004) [Pubmed]
  4. Low-temperature photosensitized oxidation of a guanosine derivative and formation of an imidazole ring-opened product. Sheu, C., Kang, P., Khan, S., Foote, C.S. J. Am. Chem. Soc. (2002) [Pubmed]
  5. Protonation of two adjacent tyrosine residues influences the reduction of cytochrome c by diphenylacetaldehyde: a possible mechanism to select the reducer agent of heme iron. Rinaldi, T.A., Tersariol, I.L., Dyszy, F.H., Prado, F.M., Nascimento, O.R., Di Mascio, P., Nantes, I.L. Free Radic. Biol. Med. (2004) [Pubmed]
  6. Assessment of the C-525 laser dye as a chemiluminescence sensitizer for lipid peroxidation in biological membranes: a comparison with chlorophyll-a. Sharov, V.S., Briviba, K., Sies, H. Free Radic. Biol. Med. (1996) [Pubmed]
  7. Chemiluminescent detection of DNA probes in forensic analysis. Klevan, L., Horton, L., Carlson, D.P., Eisenberg, A.J. Electrophoresis (1995) [Pubmed]
  8. Applications of dioxetane chemiluminescent probes to molecular biology. Beck, S., Köster, H. Anal. Chem. (1990) [Pubmed]
  9. Induced chemiluminescence of oxidized fatty acids and oils. Neeman, I., Joseph, D., Biggley, W.H., Seliger, H.H. Lipids (1985) [Pubmed]
  10. Combined flash- and glow-type chemiluminescent reactions for high-throughput genotyping of biallelic polymorphisms. Tannous, B.A., Verhaegen, M., Christopoulos, T.K., Kourakli, A. Anal. Biochem. (2003) [Pubmed]
  11. Formation of 7,8-dihydro-8-oxoguanine in the 1,2-dioxetane-induced oxidation of calf thymus DNA: evidence for photosensitized DNA damage by thermally generated triplet ketones in the dark. Adam, W., Saha-Möller, C.R., Schönberger, A., Berger, M., Cadet, J. Photochem. Photobiol. (1995) [Pubmed]
  12. Chemiluminescent reporter gene assays with 1,2-dioxetane enzyme substrates. Olesen, C.E., Martin, C.S., Mosier, J., Liu, B., Voyta, J.C., Bronstein, I. Meth. Enzymol. (2000) [Pubmed]
  13. Photobiological studies with dioxetanes in isolated DNA, bacteria, and mammalian cells. Adam, W., Beinhauer, A., Mosandl, T., Saha-Möller, C., Vargas, F., Epe, B., Müller, E., Schiffmann, D., Wild, D. Environ. Health Perspect. (1990) [Pubmed]
  14. Chemiluminescent enzyme immunoassay of alpha-fetoprotein based on an adamantyl dioxetane phenyl phosphate substrate. Thorpe, G.H., Bronstein, I., Kricka, L.J., Edwards, B., Voyta, J.C. Clin. Chem. (1989) [Pubmed]
  15. Chemiluminescent aldehyde and beta-diketone reactions promoted by peroxynitrite. Knudsen, F.S., Penatti, C.A., Royer, L.O., Bidart, K.A., Christoff, M., Ouchi, D., Bechara, E.J. Chem. Res. Toxicol. (2000) [Pubmed]
  16. Reduction of background problems in nonradioactive northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Engler-Blum, G., Meier, M., Frank, J., Müller, G.A. Anal. Biochem. (1993) [Pubmed]
  17. New variation on a theme: structure and mechanism of action of hydrolytic antibody 7F11, an aspartate rich relation of catalytic antibodies 17E8 and 29G11. Cross, S.S., Brady, K., Stevenson, J.D., Sackin, J.R., Kenward, N., Dietel, A., Thomas, N.R. J. Immunol. Methods (2002) [Pubmed]
  18. Production and chemiluminescent free radical reactions of glyoxal in lipid peroxidation of linoleic acid by the ligninolytic enzyme, manganese peroxidase. Watanabe, T., Shirai, N., Okada, H., Honda, Y., Kuwahara, M. Eur. J. Biochem. (2001) [Pubmed]
  19. Beta galactosidase release as an alternative to chromium release in cytotoxic T-cell assays. Bachy, M., Bonnin-Rivalland, A., Tilliet, V., Trannoy, E. J. Immunol. Methods (1999) [Pubmed]
  20. Chemiluminescence detection of Escherichia coli in fresh produce obtained from different sources. Mathew, F.P., Alagesan, D., Alocilja, E.C. Luminescence : the journal of biological and chemical luminescence. (2004) [Pubmed]
  21. Effects of some trivalent metal ions on the fluoride-induced chemiluminescence from a phenylphosphate-substituted dioxetane Lumigen PPD. Shamsipur, M., Chaichi, M.J. Luminescence : the journal of biological and chemical luminescence. (2002) [Pubmed]
  22. Chemiluminescent assay of alkaline phosphatase applied in an ultrasensitive enzyme immunoassay of thyrotropin. Bronstein, I., Voyta, J.C., Thorpe, G.H., Kricka, L.J., Armstrong, G. Clin. Chem. (1989) [Pubmed]
  23. Nonradioactive gel mobility shift assay using chemiluminescent detection. Berger, R., Duncan, M.R., Berman, B. BioTechniques (1993) [Pubmed]
  24. Quantification of polymerase chain reaction products: enzyme immunoassay based systems for digoxigenin- and biotin-labelled products that quantify either total or specific amplicons. Stevens, J., Yu, F.S., Hassoun, P.M., Lanzillo, J.J. Mol. Cell. Probes (1996) [Pubmed]
 
WikiGenes - Universities