The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Key molecular contacts promote recognition of the BAFF receptor by TNF receptor-associated factor 3: implications for intracellular signaling regulation.

B cell-activating factor belonging to the TNF family receptor (BAFF-R), a member of the TNFR superfamily, plays a role in autoimmunity after ligation with BAFF ligand (also called TALL-1, BLyS, THANK, or zTNF4). BAFF/BAFF-R interactions are critical for B cell regulation, and signaling from this ligand-receptor complex results in NF-kappaB activation. Most TNFRs transmit signals intracellularly by recruitment of adaptor proteins called TNFR-associated factors (TRAFs). However, BAFF-R binds only one TRAF adaptor, TRAF3, and this interaction negatively regulates activation of NF-kappaB. In this study, we report the crystal structure of a 24-residue fragment of the cytoplasmic portion of BAFF-R bound in complex with TRAF3. The recognition motif (162)PVPAT(166) in BAFF-R is accommodated in the same binding crevice on TRAF3 that binds two related TNFRs, CD40 and LTbetaR, but is presented in a completely different structural framework. This region of BAFF-R assumes an open conformation with two extended strands opposed at right angles that each make contacts with TRAF3. The recognition motif is located in the N-terminal arm and intermolecular contacts mediate TRAF recognition. In the C-terminal arm, key stabilizing contacts are made, including critical hydrogen bonds with Gln(379) in TRAF3 that define the molecular basis for selective binding of BAFF-R solely to this member of the TRAF family. A dynamic conformational adjustment of Tyr(377) in TRAF3 occurs forming a new intermolecular contact with BAFF-R that stabilizes the complex. The structure of the complex provides a molecular explanation for binding affinities and selective protein interactions in TNFR-TRAF interactions.[1]

References

  1. Key molecular contacts promote recognition of the BAFF receptor by TNF receptor-associated factor 3: implications for intracellular signaling regulation. Ni, C.Z., Oganesyan, G., Welsh, K., Zhu, X., Reed, J.C., Satterthwait, A.C., Cheng, G., Ely, K.R. J. Immunol. (2004) [Pubmed]
 
WikiGenes - Universities