The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

TRAF3  -  TNF receptor-associated factor 3

Homo sapiens

Synonyms: CAP-1, CAP1, CD40 receptor-associated factor 1, CD40-binding protein, CD40BP, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of TRAF3

 

High impact information on TRAF3

 

Chemical compound and disease context of TRAF3

 

Biological context of TRAF3

  • This inhibitory effect of TRAF3 depends on the presence of an intact zinc finger domain [11].
  • Our findings provide evidence that a MC159/TRAF2/TRAF3 complex regulates a new aspect of Fas signaling, and identify MC159 FLIP as a molecule that targets multiple features of Fas-induced cell death [12].
  • The TRAF3-binding site of human molluscipox virus FLIP molecule MC159 is critical for its capacity to inhibit Fas-induced apoptosis [12].
  • Localization of the major NF-kappaB-activating site and the sole TRAF3 binding site of LMP-1 defines two distinct signaling motifs [13].
  • The TRAF3 molecule interacts with the cytoplasmic carboxyl terminus (COOH terminus) of the Epstein-Barr virus-encoded oncogene LMP-1 [13].
 

Anatomical context of TRAF3

 

Associations of TRAF3 with chemical compounds

  • Alanine substitution and truncation mutants of the human CD40ct domain were generated, revealing residues critical for binding TRAF2, TRAF3, or both of these proteins [16].
  • Full-length TRAF3 and TRAF5 formed hetero-oligomers, presumably through their predicted isoleucine zippers [17].
  • Tumor necrosis factor receptor-associated factor (TRAF)-1, TRAF-2, and TRAF-3 interact in vivo with the CD30 cytoplasmic domain; TRAF-2 mediates CD30-induced nuclear factor kappa B activation [18].
  • The cytokine profile of CAP1- and CAP1-6D-specific CTL is consistent with a Tc1-type CTL [19].
  • Tat as well as soluble CD154 (sCD154) prevented vincristineinduced reduction of TRAF-3 in KS cells transfected with a vector for neomycin resistance (KS psv-neo), but not in KS sCD40 [20].
 

Physical interactions of TRAF3

  • We demonstrate a negative regulatory role for TRAF3 and that this activity is dependent on the availability of an intact TRAF3-binding site in the cytoplasmic domain of CD40 [21].
  • In this study, we report the crystal structure of a 24-residue fragment of the cytoplasmic portion of BAFF-R bound in complex with TRAF3 [22].
 

Regulatory relationships of TRAF3

  • The stability of TRAF3 regulates CD40/NF-kappa B-mediated control of the immune response, which is central to the biologic activity of the Reed-Sternberg cell [2].
  • Further, stable overexpression of a TRAF3 mutant that lacks the RING and zinc finger domains inhibits LTbeta R-mediated cell death [23].
  • Moreover, overexpression of TRAF3 inhibits BAFF-R-mediated NF-kappaB activation and IL-10 production [24].
  • LMP1 associated enhanced expression of membrane CD25 and soluble CD25 may have immunomodulatory functions and could be involved in biology of EBV-associated diseases [25].
 

Other interactions of TRAF3

  • These results suggest that TRAF5 and TRAF3 could be involved in both common and distinct signaling pathways emanating from CD40 [26].
  • In addition, the introduction of TRAF3 together with the dominant negative mutants of TRAF2 or TRAF5 further reduced NF-kappaB activation [27].
  • Key molecular contacts promote recognition of the BAFF receptor by TNF receptor-associated factor 3: implications for intracellular signaling regulation [22].
  • Using a Hodgkin cell line, this study demonstrates that CD40 activation of NF-kappa B is mediated by proteolysis of TRAF3 [2].
  • The full-length human CD40ct, the first 35 amino acids of the CD40ct encompassing the TRAF6 binding site (1-35), and amino acids 35-53 containing the TRAF2/TRAF3 binding domain were expressed in human lung fibroblasts as fusion proteins with the extracellular domain of human CD8alpha by retroviral transduction [28].
 

Analytical, diagnostic and therapeutic context of TRAF3

References

  1. Tumor necrosis factor receptor associated factor 2 is a mediator of NF-kappa B activation by latent infection membrane protein 1, the Epstein-Barr virus transforming protein. Kaye, K.M., Devergne, O., Harada, J.N., Izumi, K.M., Yalamanchili, R., Kieff, E., Mosialos, G. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  2. Hodgkin disease: pharmacologic intervention of the CD40-NF kappa B pathway by a protease inhibitor. Annunziata, C.M., Safiran, Y.J., Irving, S.G., Kasid, U.N., Cossman, J. Blood (2000) [Pubmed]
  3. Dominant negative mutants of TRAF3 reveal an important role for the coiled coil domains in cell death signaling by the lymphotoxin-beta receptor. Force, W.R., Cheung, T.C., Ware, C.F. J. Biol. Chem. (1997) [Pubmed]
  4. Latent membrane protein 1, tumor necrosis factor receptor-associated factor (TRAF) 1, TRAF-2, TRAF-3, and nuclear factor kappa B expression in posttransplantation lymphoproliferative disorders. Ramalingam, P., Chu, W.S., Tubbs, R., Rybicki, L., Pettay, J., Hsi, E.D. Arch. Pathol. Lab. Med. (2003) [Pubmed]
  5. In Melanoma, RAS Mutations Are Accompanied by Switching Signaling from BRAF to CRAF and Disrupted Cyclic AMP Signaling. Dumaz, N., Hayward, R., Martin, J., Ogilvie, L., Hedley, D., Curtin, J.A., Bastian, B.C., Springer, C., Marais, R. Cancer Res. (2006) [Pubmed]
  6. Tumor necrosis factor receptor-associated factor 6 (TRAF6) stimulates extracellular signal-regulated kinase (ERK) activity in CD40 signaling along a ras-independent pathway. Kashiwada, M., Shirakata, Y., Inoue, J.I., Nakano, H., Okazaki, K., Okumura, K., Yamamoto, T., Nagaoka, H., Takemori, T. J. Exp. Med. (1998) [Pubmed]
  7. Upregulation of TRAF-3 by shear stress blocks CD40-mediated endothelial activation. Urbich, C., Mallat, Z., Tedgui, A., Clauss, M., Zeiher, A.M., Dimmeler, S. J. Clin. Invest. (2001) [Pubmed]
  8. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. Tsang, K.Y., Zaremba, S., Nieroda, C.A., Zhu, M.Z., Hamilton, J.M., Schlom, J. J. Natl. Cancer Inst. (1995) [Pubmed]
  9. Chemotherapy consisting of cisplatin, doxorubicin and cyclophosphamide as an adjunct to surgery in stage Ic-II epithelial ovarian carcinoma. Gynecologic Oncology Group of the Comprehensive Cancer Center Limburg. De Pree, N., Wils, J. Anticancer Res. (1989) [Pubmed]
  10. Chemotherapy consisting of cisplatin, doxorubicin, and cyclophosphamide as an adjunct to surgery in stage Ic-II epithelial ovarian carcinoma. Gynecologic Oncology Group of the Comprehensive Cancer Center. Wils, J., van Geuns, H. Am. J. Clin. Oncol. (1989) [Pubmed]
  11. TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-kappaB pathway by TRAF-binding TNFRs. Hauer, J., Püschner, S., Ramakrishnan, P., Simon, U., Bongers, M., Federle, C., Engelmann, H. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  12. The TRAF3-binding site of human molluscipox virus FLIP molecule MC159 is critical for its capacity to inhibit Fas-induced apoptosis. Thurau, M., Everett, H., Tapernoux, M., Tschopp, J., Thome, M. Cell Death Differ. (2006) [Pubmed]
  13. Localization of the major NF-kappaB-activating site and the sole TRAF3 binding site of LMP-1 defines two distinct signaling motifs. Brodeur, S.R., Cheng, G., Baltimore, D., Thorley-Lawson, D.A. J. Biol. Chem. (1997) [Pubmed]
  14. Expression of the tumor necrosis factor receptor-associated factors (TRAFs) 1 and 2 is a characteristic feature of Hodgkin and Reed-Sternberg cells. Izban, K.F., Ergin, M., Martinez, R.L., Alkan, S. Mod. Pathol. (2000) [Pubmed]
  15. Immunohistochemical analysis of in vivo patterns of TRAF-3 expression, a member of the TNF receptor-associated factor family. Krajewski, S., Zapata, J.M., Krajewska, M., VanArsdale, T., Shabaik, A., Gascoyne, R.D., Reed, J.C. J. Immunol. (1997) [Pubmed]
  16. Differential requirements for tumor necrosis factor receptor-associated factor family proteins in CD40-mediated induction of NF-kappaB and Jun N-terminal kinase activation. Leo, E., Welsh, K., Matsuzawa, S., Zapata, J.M., Kitada, S., Mitchell, R.S., Ely, K.R., Reed, J.C. J. Biol. Chem. (1999) [Pubmed]
  17. CD40-tumor necrosis factor receptor-associated factor (TRAF) interactions: regulation of CD40 signaling through multiple TRAF binding sites and TRAF hetero-oligomerization. Pullen, S.S., Miller, H.G., Everdeen, D.S., Dang, T.T., Crute, J.J., Kehry, M.R. Biochemistry (1998) [Pubmed]
  18. Tumor necrosis factor receptor-associated factor (TRAF)-1, TRAF-2, and TRAF-3 interact in vivo with the CD30 cytoplasmic domain; TRAF-2 mediates CD30-induced nuclear factor kappa B activation. Kieff, E. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  19. Agonist peptide from a cytotoxic t-lymphocyte epitope of human carcinoembryonic antigen stimulates production of tc1-type cytokines and increases tyrosine phosphorylation more efficiently than cognate peptide. Salazar, E., Zaremba, S., Arlen, P.M., Tsang, K.Y., Schlom, J. Int. J. Cancer (2000) [Pubmed]
  20. The expression of CD154 by Kaposis sarcoma cells mediates the anti-apoptotic and migratory effects of HIV-1-TAT protein. Cantaluppi, V., Deregibus, M.C., Biancone, L., Deambrosis, I., Bussolati, B., Albini, A., Camussi, G. International journal of immunopathology and pharmacology. (2006) [Pubmed]
  21. Cutting edge: contrasting roles of TNF receptor-associated factor 2 (TRAF2) and TRAF3 in CD40-activated B lymphocyte differentiation. Hostager, B.S., Bishop, G.A. J. Immunol. (1999) [Pubmed]
  22. Key molecular contacts promote recognition of the BAFF receptor by TNF receptor-associated factor 3: implications for intracellular signaling regulation. Ni, C.Z., Oganesyan, G., Welsh, K., Zhu, X., Reed, J.C., Satterthwait, A.C., Cheng, G., Ely, K.R. J. Immunol. (2004) [Pubmed]
  23. Lymphotoxin-beta receptor signaling complex: role of tumor necrosis factor receptor-associated factor 3 recruitment in cell death and activation of nuclear factor kappaB. VanArsdale, T.L., VanArsdale, S.L., Force, W.R., Walter, B.N., Mosialos, G., Kieff, E., Reed, J.C., Ware, C.F. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  24. TNFR-associated factor-3 is associated with BAFF-R and negatively regulates BAFF-R-mediated NF-kappa B activation and IL-10 production. Xu, L.G., Shu, H.B. J. Immunol. (2002) [Pubmed]
  25. Epstein-Barr virus latent membrane protein-1 activates CD25 expression in lymphoma cells involving the NFkappaB pathway. Vockerodt, M., Tesch, H., Kube, D. Genes Immun. (2001) [Pubmed]
  26. TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling. Ishida, T.K., Tojo, T., Aoki, T., Kobayashi, N., Ohishi, T., Watanabe, T., Yamamoto, T., Inoue, J. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  27. Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2- and TRAF5-mediated NF-kappaB activation. Kawamata, S., Hori, T., Imura, A., Takaori-Kondo, A., Uchiyama, T. J. Biol. Chem. (1998) [Pubmed]
  28. The TRAF6, but not the TRAF2/3, binding domain of CD40 is required for cytokine production in human lung fibroblasts. Purkerson, J.M., Smith, R.S., Pollock, S.J., Phipps, R.P. Eur. J. Immunol. (2005) [Pubmed]
  29. Discrete signaling regions in the lymphotoxin-beta receptor for tumor necrosis factor receptor-associated factor binding, subcellular localization, and activation of cell death and NF-kappaB pathways. Force, W.R., Glass, A.A., Benedict, C.A., Cheung, T.C., Lama, J., Ware, C.F. J. Biol. Chem. (2000) [Pubmed]
  30. TRAF interactions with raft-like buoyant complexes, better than TRAF rates of degradation, differentiate signaling by CD40 and EBV latent membrane protein 1. Ardila-Osorio, H., Pioche-Durieu, C., Puvion-Dutilleul, F., Clausse, B., Wiels, J., Miller, W., Raab-Traub, N., Busson, P. Int. J. Cancer (2005) [Pubmed]
  31. Crystallization and preliminary X-ray analysis of the TRAF domain of TRAF3. Ni, C.Z., Welsh, K., Zheng, J., Havert, M., Reed, J.C., Ely, K.R. Acta Crystallogr. D Biol. Crystallogr. (2002) [Pubmed]
 
WikiGenes - Universities