The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Neuropeptide Y-Y1 receptor agonist worsens while antagonist improves survival of cultured Y1-expressing neuronal cells following oxygen and glucose deprivation.

In this in vitro study, we investigated the influence of neuropeptide Y ( NPY) Y1 receptor activation or inhibition on the viability of cultured neuronal or glial cells following oxygen glucose deprivation (OGD). Viability of cultured cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. When compared to the vehicle-treated control group, treatment with NPY or [Leu31,Pro34]-NPY (Y1 agonist) reduced viability of cultured SK-N-MC (Y1-expressing) human neuronal cells at 24 h after 1 h of OGD, while BIBP3226 (Y1 antagonist) improved viability. Except at the highest concentration of NPY used in the study, treatment with NPY or NPY3-36 (Y2 agonist) did not influence viability of cultured SH-SY5Y (Y2-expressing) human neuronal cells at 24 h after 1 h of OGD. In addition, treatment with NPY, [Leu31,Pro34]-NPY, NPY3-36, or BIBP3226 did not affect viability of cultured primary astrocytes at 24 h after 4 h of OGD. The present results agree with those of a recent in vivo study. Activation of NPY-Y1 receptors may mediate ischemic pathophysiological processes, and inhibiting the Y1 receptors may be protective. The combination of OGD and cultured neuronal cells may be useful in future studies on the neuroprotective and harmful mechanisms of NPY-Y1 receptor inhibition and activation during ischemia, respectively.[1]

References

 
WikiGenes - Universities