The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Biochemical analysis of the substrate specificity of the beta-ketoacyl-acyl carrier protein synthase domain of module 2 of the erythromycin polyketide synthase.

The beta-ketoacyl-acyl carrier protein synthase ( KS) domain of the modular 6-deoxyerythronolide B synthase (DEBS) catalyzes the fundamental chain building reaction of polyketide biosynthesis. The KS-catalyzed reaction involves two discrete steps consisting of formation of an acyl-enzyme intermediate generated from the incoming acylthioester substrate and an active site cysteine residue, and the conversion of this intermediate to the beta-ketoacyl-acyl carrier protein product by a decarboxylative condensation with a paired methylmalonyl-SACP. We have determined the rate constants for the individual biochemical steps by a combination of protein acylation and transthioesterification experiments. The first-order rate constant (k(2)) for formation of the acyl-enzyme intermediate from [1-(14)C]-(2S,3R)-2-methyl-3-hydroxypentanoyl-SNAC (2) and recombinant DEBS module 2 is 5.8 +/- 2.6 min(-)(1), with a dissociation constant (K(S)) of 3.5 +/- 2.8 mM. The acyl-enzyme adduct was formed at a near-stoichiometric ratio of approximately 0.8:1. Transthioesterification between unlabeled diketide-SNAC 2 and N-[1-(14)C-acetyl]cysteamine gave a k(exch) of 0.15 +/- 0.06 min(-)(1), with a K(m) for HSNAC of 5.7 +/- 4.9 mM and a K(m) for 2 of 5.3 +/- 0.9 mM. Under the conditions that were used, k(exch) was equal to k(-)(2), the first-order rate constant for reversal of the acyl-enzyme-forming reaction. Since the rate of the decarboxylative condensation is much greater that the rate of reversion to the starting material (k(3) >> k(-)(2)), formation of the acyl-enzyme adduct is effectively irreversible, thereby establishing that the observed value of the specificity constant (k(cat)/K(m)) is solely a reflection of the intrinsic substrate specificity of the KS-catalyzed acyl-enzyme-forming reaction. These findings were also extended to a panel of diketide- and triketide-SNAC analogues, revealing that some substrate analogues that are not converted to product by DEBS module 2 form dead-end acyl-enzyme intermediates.[1]


WikiGenes - Universities