The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Demonstration of differential virulence gene promoter activation in vivo in Bordetella pertussis using RIVET.

Bordetella pertussis, the etiologic agent of whooping cough, causes disease by employing an array of virulence factors controlled by the BvgA-BvgS two-component signal transduction system. Regulation by this system has been extensively characterized in vitro, where bvg-activated genes are repressed in a process known as phenotypic modulation. Differential regulation of these genes by the response regulator BvgA results in promoters that are activated early, middle, or late after being released from modulation. However, the in vivo environmental signal and regulation pattern has not been described. In order to investigate BvgAS-mediated regulation of B. pertussis virulence factors in vivo using the mouse aerosol challenge model, we have adapted the recombinase-based in vivo technology (RIVET) system for use in B. pertussis. We have demonstrated that these strains show resolution during in vitro growth under non-modulating conditions. In addition, we have demonstrated that modulating strains by growth on media containing MgSO4 does not affect virulence in the mouse aerosol challenge model. We have therefore used the RIVET system to reveal the time-course of gene expression in vivo for selected B. pertussis virulence factors (cya, fha, prn and ptx). Our data indicate that this method can be effectively used to monitor and compare in vivo and in vitro gene expression in B. pertussis, and that temporal regulation patterns previously observed in vitro are mirrored in vivo.[1]


WikiGenes - Universities