The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

vrg-6  -  virulence protein

Bordetella pertussis Tohama I

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of vrg-6

 

High impact information on vrg-6

 

Chemical compound and disease context of vrg-6

 

Biological context of vrg-6

  • To determine the role of this DNA sequence in vrg regulation, a nucleotide substitution mutation in the conserved region of vrg-6 was isolated [14].
  • To determine whether sequences in the coding region were sufficient to respond to antigenic modulation, a vrg-6::TnphoA promoter deletion plasmid that contained a heterologous promoter driving the expression of vrg-6 coding sequences from the vrg-6 translation start site to the TnphoA fusion junction was constructed [14].
  • We observed a 21-base palindromic sequence overlapping an 8-base direct repeat within the signal sequence coding region of vrg-6; insertion of a 6-bp linker in this region abolished regulation [1].
  • Phosphorylated BvgA is sufficient for transcriptional activation of virulence-regulated genes in Bordetella pertussis [8].
  • We suggest that the previously observed differences in regulation of individual virulence-associated genes reflect differences in the phosphorylation state of BvgA [8].
 

Anatomical context of vrg-6

 

Associations of vrg-6 with chemical compounds

  • The strains which had at least one virulence trait also demonstrated some adenylate cyclase activity [20].
  • The responses to glutamate depletion exhibited similarities to the responses induced by exit from log phase, including decreased virulence factor transcript levels [21].
  • It was found that the leukocytosis-promoting, histamine-sensitizing, and mouse-protecting activities of the mutants were similar to those of the parent strain but that the virulence to mice was lower [22].
  • From a bank of TnphoA fusions, we have identified five genes whose expression profiles are reciprocal of those of the major virulence determinants; that is, alkaline phosphatase activity is maximal during growth in the presence of the modulators nicotinic acid and MgSO4 (S. Knapp and J. J. Mekalanos, J. Bacteriol. 170:5059-5066, 1988) [1].
  • Apart from iron regulation, sodA expression was affected by changes in DNA topology induced by coumermycin A but not by the global virulence regulatory Bvg system [23].
 

Other interactions of vrg-6

 

Analytical, diagnostic and therapeutic context of vrg-6

References

  1. Evidence that modulation requires sequences downstream of the promoters of two vir-repressed genes of Bordetella pertussis. Beattie, D.T., Knapp, S., Mekalanos, J.J. J. Bacteriol. (1990) [Pubmed]
  2. Structure of Bordetella pertussis virulence factor P.69 pertactin. Emsley, P., Charles, I.G., Fairweather, N.F., Isaacs, N.W. Nature (1996) [Pubmed]
  3. Pertactin beta-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins. Junker, M., Schuster, C.C., McDonnell, A.V., Sorg, K.A., Finn, M.C., Berger, B., Clark, P.L. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  4. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Censini, S., Lange, C., Xiang, Z., Crabtree, J.E., Ghiara, P., Borodovsky, M., Rappuoli, R., Covacci, A. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  5. A high-molecular-weight outer membrane protein of Xanthomonas oryzae pv. oryzae exhibits similarity to non-fimbrial adhesins of animal pathogenic bacteria and is required for optimum virulence. Ray, S.K., Rajeshwari, R., Sharma, Y., Sonti, R.V. Mol. Microbiol. (2002) [Pubmed]
  6. Phase variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system. Stibitz, S., Aaronson, W., Monack, D., Falkow, S. Nature (1989) [Pubmed]
  7. Coordinate regulation and sensory transduction in the control of bacterial virulence. Miller, J.F., Mekalanos, J.J., Falkow, S. Science (1989) [Pubmed]
  8. Phosphorylated BvgA is sufficient for transcriptional activation of virulence-regulated genes in Bordetella pertussis. Steffen, P., Goyard, S., Ullmann, A. EMBO J. (1996) [Pubmed]
  9. Calmodulin-activated bacterial adenylate cyclases as virulence factors. Mock, M., Ullmann, A. Trends Microbiol. (1993) [Pubmed]
  10. The Bordetella pertussis sigma subunit of RNA polymerase confers enhanced expression of fha in Escherichia coli. Steffen, P., Goyard, S., Ullmann, A. Mol. Microbiol. (1997) [Pubmed]
  11. Bordetella pertussis infection of human monocytes inhibits antigen-dependent CD4 T cell proliferation. Boschwitz, J.S., Batanghari, J.W., Kedem, H., Relman, D.A. J. Infect. Dis. (1997) [Pubmed]
  12. In vitro and in vivo characterization of a Bordetella bronchiseptica mutant strain with a deep rough lipopolysaccharide structure. Sisti, F., Fernández, J., Rodríguez, M.E., Lagares, A., Guiso, N., Hozbor, D.F. Infect. Immun. (2002) [Pubmed]
  13. Reduced glutathione is required for pertussis toxin secretion by Bordetella pertussis. Stenson, T.H., Patton, A.K., Weiss, A.A. Infect. Immun. (2003) [Pubmed]
  14. Repressor binding to a regulatory site in the DNA coding sequence is sufficient to confer transcriptional regulation of the vir-repressed genes (vrg genes) in Bordetella pertussis. Beattie, D.T., Mahan, M.J., Mekalanos, J.J. J. Bacteriol. (1993) [Pubmed]
  15. The virulence factors of Bordetella pertussis: a matter of control. Smith, A.M., Guzmán, C.A., Walker, M.J. FEMS Microbiol. Rev. (2001) [Pubmed]
  16. Binding of FimD on Bordetella pertussis to very late antigen-5 on monocytes activates complement receptor type 3 via protein tyrosine kinases. Hazenbos, W.L., van den Berg, B.M., Geuijen, C.W., Mooi, F.R., van Furth, R. J. Immunol. (1995) [Pubmed]
  17. Type IV transporters of pathogenic bacteria. Burns, D.L. Curr. Opin. Microbiol. (2003) [Pubmed]
  18. Bordetella pertussis virulence factors affect phagocytosis by human neutrophils. Weingart, C.L., Weiss, A.A. Infect. Immun. (2000) [Pubmed]
  19. Uptake and intracellular survival of Bordetella pertussis in human macrophages. Friedman, R.L., Nordensson, K., Wilson, L., Akporiaye, E.T., Yocum, D.E. Infect. Immun. (1992) [Pubmed]
  20. Spontaneous phase variation in Bordetella pertussis is a multistep non-random process. Goldman, S., Hanski, E., Fish, F. EMBO J. (1984) [Pubmed]
  21. Growth Phase- and Nutrient Limitation-Associated Transcript Abundance Regulation in Bordetella pertussis. Nakamura, M.M., Liew, S.Y., Cummings, C.A., Brinig, M.M., Dieterich, C., Relman, D.A. Infect. Immun. (2006) [Pubmed]
  22. Mutant of Bordetella pertussis which lacks ability to produce filamentous hemagglutinin. Watanabe, M., Nakase, Y. Infect. Immun. (1982) [Pubmed]
  23. Cloning and characterization of an Mn-containing superoxide dismutase (SodA) of Bordetella pertussis. Graeff-Wohlleben, H., Killat, S., Banemann, A., Guiso, N., Gross, R. J. Bacteriol. (1997) [Pubmed]
  24. Targeted mutations that ablate either the adenylate cyclase or hemolysin function of the bifunctional cyaA toxin of Bordetella pertussis abolish virulence. Gross, M.K., Au, D.C., Smith, A.L., Storm, D.R. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  25. A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of Bvg-regulated antigens. Cotter, P.A., Miller, J.F. Mol. Microbiol. (1997) [Pubmed]
  26. Mutations in the bvgA gene of Bordetella pertussis that differentially affect regulation of virulence determinants. Stibitz, S. J. Bacteriol. (1994) [Pubmed]
  27. Global regulatory mechanisms affect virulence gene expression in Bordetella pertussis. Graeff-Wohlleben, H., Deppisch, H., Gross, R. Mol. Gen. Genet. (1995) [Pubmed]
  28. Demonstration of differential virulence gene promoter activation in vivo in Bordetella pertussis using RIVET. Veal-Carr, W.L., Stibitz, S. Mol. Microbiol. (2005) [Pubmed]
  29. Antigenic divergence suggested by correlation between antigenic variation and pulsed-field gel electrophoresis profiles of Bordetella pertussis isolates in Japan. Kodama, A., Kamachi, K., Horiuchi, Y., Konda, T., Arakawa, Y. J. Clin. Microbiol. (2004) [Pubmed]
  30. Rapid typing of Bordetella pertussis pertussis toxin gene variants by LightCycler real-time PCR and fluorescence resonance energy transfer hybridization probe melting curve analysis. Mäkinen, J., Mertsola, J., Viljanen, M.K., Arvilommi, H., He, Q. J. Clin. Microbiol. (2002) [Pubmed]
  31. Identification of Btr-regulated genes using a titration assay. Search for a role for this transcriptional regulator in the growth and virulence of Bordetella pertussis. Wood, G.E., Khelef, N., Guiso, N., Friedman, R.L. Gene (1998) [Pubmed]
  32. The filamentous hemagglutinin of Bordetella parapertussis is the major adhesin in the phase-dependent interaction with NCI-H292 human lung epithelial cells. van den Akker, W.M. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
 
WikiGenes - Universities