The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The effect of camphorquinone (CQ) and CQ-related photosensitizers on the generation of reactive oxygen species and the production of oxidative DNA damage.

Recent evidence suggests that following visible-light (VL) irradiation, CQ and the CQ-related photosensitizers benzil (BZ), benzophenone (BP), and 9-fluorenone (9-F) generate initiating radicals that may indiscriminately react with molecular oxygen forming reactive oxygen species (ROS). The purpose of this investigation was to determine whether VL-irradiated CQ, BZ, BP, and 9-F cause DNA damage due to the generation of ROS in vitro. ROS formation by CQ and CQ-related photosensitizers+/-dimethyl-p-toluidine ( DMT) was investigated in a cell-free system with VL irradiation. DNA damage was determined using PhiX-174 RF I supercoiled double-stranded plasmid DNA and ROS quantified with 4-((9-acridinecarbonyl)amino)-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO-9-AC), a fluorogenic ROS-sensitive probe. VL-irradiated CQ, BZ, BP, and 9-F (+/-DMT) produced significant DNA damage at 0.1, 0.5, and 1.0 mM and in a concentration-dependent manner (p<0.05). TEMPO-9-AC revealed that all investigated VL-irradiated photosensitizers produced significant amounts of ROS with BZ in the presence of DMT generating the most ROS after 30, 60, and 90 min. VL-irradiated CQ, BZ, BP, and 9-F +/-DMT continued to generate significant amounts of ROS 90 min after VL irradiation. As a result, future investigations should evaluate the effect of VL-irradiated photosensitizers in cells and possible protective effects provided by antioxidants.[1]


WikiGenes - Universities