The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Age-associated oxidative damage leads to absence of gamma-cystathionase in over 50% of rat lenses: relevance in cataractogenesis.

Oxidative damage to lens proteins and glutathione depletion play a major role in the development of senile cataract. We previously found that a deficiency in gamma-cystathionase activity may be responsible for glutathione depletion in old lenses. The aims of this study were: (1) to investigate the mechanism that causes the age-related deficiency in gamma-cystathionase activity in the eye lens, and (2) to determine the role of gamma-cystathionase deficiency in cataractogenesis. Two populations of old rats were found, one (56%) whose lenses lacked gamma-cystathionase activity and the rest that exhibited detectable enzyme activity. gamma-Cystathionase protein was absent in lenses from old rats without gamma-cystathionase activity. Oxidative stress targeted gamma-cystathionase in the eye lens upon aging, since the enzyme contained more carbonyl groups in old lenses than in young ones. gamma-Cystathionase mRNA was also markedly reduced in old lenses, thus contributing to the age-associated deficiency in gamma-cystathionase. Inhibition of gamma-cystathionase activity caused glutathione depletion in lenses and led to cataractogenesis in vitro. In conclusion, the lack of gamma-cystathionase activity in over 50% of old lenses is due to decreased gene expression and proteolytic degradation of the oxidized enzyme. This results in a high risk for the development of senile cataract.[1]

References

  1. Age-associated oxidative damage leads to absence of gamma-cystathionase in over 50% of rat lenses: relevance in cataractogenesis. Sastre, J., Martín, J.A., Gómez-Cabrera, M.C., Pereda, J., Borrás, C., Pallardó, F.V., Viña, J. Free Radic. Biol. Med. (2005) [Pubmed]
 
WikiGenes - Universities