The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Roles of inhibition in creating complex auditory responses in the inferior colliculus: facilitated combination-sensitive neurons.

We studied roles of inhibition on temporally sensitive facilitation in combination-sensitive neurons from the mustached bat's inferior colliculus (IC). In these integrative neurons, excitatory responses to best frequency (BF) tones are enhanced by much lower frequency signals presented in a specific temporal relationship. Most facilitated neurons (76%) showed inhibition at delays earlier than or later than the delays causing facilitation. The timing of inhibition at earlier delays was closely related to the best delay of facilitation, but the inhibition had little influence on the duration or strength of the facilitatory interaction. Local iontophoretic application of antagonists to receptors for glycine (strychnine, STRY) and gamma-aminobutyric acid (GABA) (bicuculline, BIC) showed that STRY abolished facilitation in 96% of tested units, but BIC eliminated facilitation in only 28%. This suggests that facilitatory interactions are created in IC and reveals a differential role for these neurotransmitters. The facilitation may be created by coincidence of a postinhibitory rebound excitation activated by the low-frequency signal with the BF-evoked excitation. Unlike facilitation, inhibition at earlier delays was not eliminated by application of antagonists, suggesting an origin in lower brain stem nuclei. However, inhibition at delays later than facilitation, like facilitation itself, appears to originate within IC and to be more dependent on glycinergic than GABAergic mechanisms. Facilitatory and inhibitory interactions displayed by these combination-sensitive neurons encode information within sonar echoes and social vocalizations. The results indicate that these complex response properties arise through a series of neural interactions in the auditory brain stem and midbrain.[1]

References

 
WikiGenes - Universities