The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Aqueous photochemical reaction kinetics and transformations of fluoxetine.

Fluoxetine (FLX) was shown to be photoreactive in sunlit surface waters. FLX degraded in deionized water when exposed to simulated sunlight with a half-life of 55.2+/-3.6 h(-1). Photodegradation products were identified using high performance liquid chromatography-UV (HPLC-UV) and liquid chromatography tandem mass spectrometry (LC-MS-MS) using electrospray (ES) ionization. Defluorination of the trifluoromethyl group in FLX and in fluometuron and flutalanil,two other compounds containing this functional group, is suggested to be a common direct photolysis pathway for trifluoromethylated compounds. Products resulting from O-dealkylation of FLX were also observed. The rate of degradation was faster in synthetic field water where .OH was the likely dominant oxidant in the system. The bimolecular rate constant for the reaction between FLX and .OH was measured as (8.4+/-0.5) x 10(9) and (9.6 +/-0.8) x 10(9) M(-1) s(-1) using two different methods of competition kinetics. Indirect photodegradation reactions could lead to the production of hydroxylated and O-dealkylated compounds. Although direct photolysis could potentially limitthe persistence of FLX in surface waters, its degradation by indirect photolysis would proceed faster. Thus, this latter process could be important in the elimination of FLX in surface waters.[1]

References

  1. Aqueous photochemical reaction kinetics and transformations of fluoxetine. Lam, M.W., Young, C.J., Mabury, S.A. Environ. Sci. Technol. (2005) [Pubmed]
 
WikiGenes - Universities