The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Changes in glutamate receptor function in synaptic input to the superficial superior colliculus (SSC) with aging and in retinal degeneration in the Royal College of Surgeons (RCS) rat.

Ionotropic and metabotropic glutamate receptors mediate and modulate retinocollicular transmission. The Royal College of Surgeons (RCS) dystrophic strain of rats suffers from a progressive retinal degeneration with age and hence loss of visual function. We investigated whether this loss of function is accompanied by functional changes in a central target of retinal axons, the superficial superior colliculus (SSC). Field potential recordings were made in SSC slices from RCS rats aged either 4-7 weeks or 33-52 weeks. Blockade of GABAergic transmission revealed a field EPSP in response to optic tract stimulation which was sensitive to the NMDA antagonist AP5. In normal non-dystrophic rats the contribution of NMDA receptors to the fEPSP declined with age, whereas in dystrophic animals no such decline was seen. As mGluR8 may be located on terminals of retinal axons, we also assessed the function of this receptor. The mGluR8 agonist DCPG reduced fEPSPs in normal and dystrophic rats in both age groups to a similar extent, although the effect of DCPG declined with age. These findings indicate that the contribution of NMDA receptors to retinocollicular transmission declines with age in normal rats, but that such a decline is not seen in dystrophic rats which have severely reduced visual function. As NMDA receptors are associated with neural plasticity, it may be that this finding represents an increased residual potential for plasticity in dystrophic rats which may be functionally important.[1]


WikiGenes - Universities