The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Distinct trans-plasma membrane redox pathways reduce cell-impermeable dyes in HeLa cells.

Trans-plasma membrane electron transport (tPMET) in mammalian cells has been demonstrated using artificial cell-impermeable dyes, but the extent to which reduction of these dyes involves distinct pathways remains unclear. Here we compare the properties of three commonly used dyes, WST-1, FeCN and DCIP. The presence of an intermediate electron carrier (mPMS or CoQ(1)) was obligatory for WST-1 reduction, whereas FeCN and DCIP were reduced directly. FeCN reduction was, however, greatly enhanced by CoQ(1), whereas DCIP was unaffected. Superoxide dismutase (SOD) and aminooxyacetate (AOA), a malate/aspartate shuttle inhibitor, strongly inhibited WST-1 reduction and reduced DCIP reduction by 40-60%, but failed to affect FeCN reduction, indicating involvement of mitochondrial TCA cycle-derived NADH and a possible role for superoxide in WST-1 but not FeCN reduction. Reduction of all three substrates was similarly inhibited by dicoumarol, diphenyleneiodonium and capsaicin. These results demonstrate that WST-1 FeCN and DCIP are reduced by distinct tPMET pathways.[1]

References

 
WikiGenes - Universities