The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

SureCN8086     N-[(4-hydroxy-3-methoxy- phenyl)methyl]-8...

Synonyms: KBioGR_000268, KBioGR_002158, KBioSS_000268, KBioSS_000783, NINDS_000354, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Capsaicin


Psychiatry related information on Capsaicin


High impact information on Capsaicin


Chemical compound and disease context of Capsaicin


Biological context of Capsaicin

  • OEA does not affect food intake when injected into the brain ventricles, and its anorexic actions are prevented when peripheral sensory fibres are removed by treatment with capsaicin [20].
  • We conclude that capsaicin destroys the perikarya of primary sensory peptidergic neurones by interfering with the action of NGF, probably by blocking its retrograde axonal transport [21].
  • The neuropharmacology of capsaicin: review of some recent observations [22].
  • RESULTS: The majority of the parental SCC cells underwent apoptosis after a 12-hour exposure to 100 micro M capsaicin or 10 micro M resiniferatoxin [23].
  • Determinants of icilin sensitivity map to a region of TRPM8 that corresponds to the capsaicin binding site on the noxious heat receptor TRPV1, suggesting a conserved molecular logic for gating of these thermosensitive channels by chemical agonists [24].

Anatomical context of Capsaicin

  • In electrophysiological studies performed in vitro, responses of single vagal C fibers to capsaicin, applied to receptive fields of single-fiber units in the trachea, were also markedly increased after perfusion with bradykinin, whereas A delta fiber responses to hypertonic saline were unaffected [25].
  • We report here that in newborn rats concomitant administration of NGF partially antagonized the deleterious effect of capsaicin on substance P-containing neurones in dorsal root ganglia as assessed by morphological and biochemical criteria [21].
  • Capsaicin-induced desensitization of airway mucosa to cigarette smoke, mechanical and chemical irritants [26].
  • Peppers, capsaicin, and the gastric mucosa [27].
  • In the urinary bladder, the capsaicin-gated ion channel TRPV1 is expressed both within afferent nerve terminals and within the epithelial cells that line the bladder lumen [28].

Associations of Capsaicin with other chemical compounds

  • Both the pain and the morphological changes produced by NMDA were significantly reduced by substance P-receptor antagonists or by elimination of substance P-containing primary afferent fibres with the neurotoxin capsaicin [29].
  • The acute effects of 12-O-tetradecanoylphorbol-13-acetate [(TPA) CAS: 56937-68-9], T-2 toxin (CAS: 21259-20-1), capsaicin (CAS: 404-86-4), cigarette smoke condensate (CSC), and ethanol (CAS: 3807-77-0) were examined in secondary cultured human esophageal epithelial cells in serum-free LHC-8 medium [30].
  • However, a 75-micrograms/kg dose of capsaicin, which caused almost no extravasation of Evans blue in the tracheas of pathogen-free controls (17 +/- 3 ng/mg; mean +/- SE), produced extensive extravasation in the infected rats (135 +/- 18 ng/mg; P less than 0.001) [4].
  • Spantide, a tachykinin antagonist, markedly inhibited the capsaicin-induced gallbladder contraction, leaving the atropine-sensitive response to field stimulation unaffected [31].
  • The laparotomy-induced protection against ethanol injury was abolished by sensory denervation by capsaicin (total dose, 125 mg/kg, SC) and also by pretreatment with indomethacin (5 mg/kg, SC) [32].

Gene context of Capsaicin


Analytical, diagnostic and therapeutic context of Capsaicin

  • Consistent with this concept, we show here that selective sensory-fiber denervation with capsaicin and targeted deletion of the PPT-A gene protect murine lungs against both immune complex-mediated and stretch-mediated injuries [38].
  • We subtracted positron emission tomography scans obtained during painful heating of normal skin from scans during equally intense but normally innocuous heating of capsaicin-treated skin [39].
  • This study investigated in vivo (1) the effect of rectal distention (RD) on proximal colonic net water flux, (2) the role of tachykinins, and muscarinic and nicotinic connections, and (3) the influence of capsaicin-sensitive nerves and vagotomy in this effect [40].
  • No changes in the CGRP-containing motor end plates were observed either after treatment of neonatal rats with capsaicin or ablation of cell bodies from the central portion of the nodose ganglion [41].
  • The distribution and characterization of calcitonin gene-related peptide immunoreactivity in the digestive system of normal, capsaicin-treated, and littermate control rats were studied by radioimmunoassay, chromatography, and immunohistochemistry [42].


  1. Treatment of painful diabetic neuropathy with topical capsaicin. Ross, D.R., Varipapa, R.J. N. Engl. J. Med. (1989) [Pubmed]
  2. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Davis, J.B., Gray, J., Gunthorpe, M.J., Hatcher, J.P., Davey, P.T., Overend, P., Harries, M.H., Latcham, J., Clapham, C., Atkinson, K., Hughes, S.A., Rance, K., Grau, E., Harper, A.J., Pugh, P.L., Rogers, D.C., Bingham, S., Randall, A., Sheardown, S.A. Nature (2000) [Pubmed]
  3. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., Julius, D. Nature (1997) [Pubmed]
  4. Mycoplasma pulmonis infections cause long-lasting potentiation of neurogenic inflammation in the respiratory tract of the rat. McDonald, D.M., Schoeb, T.R., Lindsey, J.R. J. Clin. Invest. (1991) [Pubmed]
  5. Opiate-mediated inhibition of calcium signaling is decreased in dorsal root ganglion neurons from the diabetic BB/W rat. Hall, K.E., Sima, A.A., Wiley, J.W. J. Clin. Invest. (1996) [Pubmed]
  6. Intrathecal capsaicin depletes substance P in the rat spinal cord and produces prolonged thermal analgesia. Yaksh, T.L., Farb, D.H., Leeman, S.E., Jessell, T.M. Science (1979) [Pubmed]
  7. Intraileal capsaicin inhibits gastrointestinal contractions via a neural reflex in conscious dogs. Shibata, C., Jin, X.L., Naito, H., Matsuno, S., Sasaki, I. Gastroenterology (2002) [Pubmed]
  8. Intragastric capsaicin protects against aspirin-induced lesion formation and bleeding in the rat gastric mucosa. Holzer, P., Pabst, M.A., Lippe, I.T. Gastroenterology (1989) [Pubmed]
  9. Topical capsaicin in painful diabetic neuropathy. Effect on sensory function. Tandan, R., Lewis, G.A., Badger, G.B., Fries, T.J. Diabetes Care (1992) [Pubmed]
  10. The sensory response to capsaicin during repeated topical exposures: differential effects on sensations of itching and pungency. Green, B.G., Shaffer, G.S. Pain (1993) [Pubmed]
  11. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Story, G.M., Peier, A.M., Reeve, A.J., Eid, S.R., Mosbacher, J., Hricik, T.R., Earley, T.J., Hergarden, A.C., Andersson, D.A., Hwang, S.W., McIntyre, P., Jegla, T., Bevan, S., Patapoutian, A. Cell (2003) [Pubmed]
  12. Topical capsaicin in the treatment of painful diabetic neuropathy. Levy, D.M., Abraham, R.R., Tomlinson, D.R. N. Engl. J. Med. (1991) [Pubmed]
  13. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Smith, G.D., Gunthorpe, M.J., Kelsell, R.E., Hayes, P.D., Reilly, P., Facer, P., Wright, J.E., Jerman, J.C., Walhin, J.P., Ooi, L., Egerton, J., Charles, K.J., Smart, D., Randall, A.D., Anand, P., Davis, J.B. Nature (2002) [Pubmed]
  14. The vanilloid receptor: a molecular gateway to the pain pathway. Caterina, M.J., Julius, D. Annu. Rev. Neurosci. (2001) [Pubmed]
  15. Primary sensory nerves mediate in part the protective mesenteric hyperemia after intraduodenal acidification in rats. Leung, F.W. Gastroenterology (1993) [Pubmed]
  16. Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Iannetti, G.D., Zambreanu, L., Wise, R.G., Buchanan, T.J., Huggins, J.P., Smart, T.S., Vennart, W., Tracey, I. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  17. Capsaicin inhibits preferentially the NADH oxidase and growth of transformed cells in culture. Morré, D.J., Chueh, P.J., Morré, D.M. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  18. Histamine H3-receptor-mediated inhibition of calcitonin gene-related peptide release from cardiac C fibers. A regulatory negative-feedback loop. Imamura, M., Smith, N.C., Garbarg, M., Levi, R. Circ. Res. (1996) [Pubmed]
  19. Protective effect of proteinase-activated receptor 2 activation on motility impairment and tissue damage induced by intestinal ischemia/reperfusion in rodents. Cattaruzza, F., Cenac, N., Barocelli, E., Impicciatore, M., Hyun, E., Vergnolle, N., Sternini, C. Am. J. Pathol. (2006) [Pubmed]
  20. An anorexic lipid mediator regulated by feeding. Rodríguez de Fonseca, F., Navarro, M., Gómez, R., Escuredo, L., Nava, F., Fu, J., Murillo-Rodríguez, E., Giuffrida, A., LoVerme, J., Gaetani, S., Kathuria, S., Gall, C., Piomelli, D. Nature (2001) [Pubmed]
  21. Nerve growth factor antagonizes the neurotoxic action of capsaicin on primary sensory neurones. Otten, U., Lorez, H.P., Businger, F. Nature (1983) [Pubmed]
  22. The neuropharmacology of capsaicin: review of some recent observations. Buck, S.H., Burks, T.F. Pharmacol. Rev. (1986) [Pubmed]
  23. Examining the role of mitochondrial respiration in vanilloid-induced apoptosis. Hail, N., Lotan, R. J. Natl. Cancer Inst. (2002) [Pubmed]
  24. The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Chuang, H.H., Neuhausser, W.M., Julius, D. Neuron (2004) [Pubmed]
  25. Bradykinin-evoked sensitization of airway sensory nerves: a mechanism for ACE-inhibitor cough. Fox, A.J., Lalloo, U.G., Belvisi, M.G., Bernareggi, M., Chung, K.F., Barnes, P.J. Nat. Med. (1996) [Pubmed]
  26. Capsaicin-induced desensitization of airway mucosa to cigarette smoke, mechanical and chemical irritants. Lundberg, J.M., Saria, A. Nature (1983) [Pubmed]
  27. Peppers, capsaicin, and the gastric mucosa. Holzer, P. JAMA (1989) [Pubmed]
  28. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Birder, L.A., Nakamura, Y., Kiss, S., Nealen, M.L., Barrick, S., Kanai, A.J., Wang, E., Ruiz, G., De Groat, W.C., Apodaca, G., Watkins, S., Caterina, M.J. Nat. Neurosci. (2002) [Pubmed]
  29. NMDA-receptor regulation of substance P release from primary afferent nociceptors. Liu, H., Mantyh, P.W., Basbaum, A.I. Nature (1997) [Pubmed]
  30. Effects of tumor promoters and cocarcinogens on growth and differentiation of cultured human esophageal epithelial cells. Sasajima, K., Willey, J.C., Banks-Schlegel, S.P., Harris, C.C. J. Natl. Cancer Inst. (1987) [Pubmed]
  31. Release of substance P- and calcitonin gene-related peptide-like immunoreactivity and motor response of the isolated guinea pig gallbladder to capsaicin. Maggi, C.A., Santicioli, P., Renzi, D., Patacchini, R., Surrenti, C., Meli, A. Gastroenterology (1989) [Pubmed]
  32. Laparotomy-induced gastric protection against ethanol injury is mediated by capsaicin-sensitive sensory neurons. Yonei, Y., Holzer, P., Guth, P.H. Gastroenterology (1990) [Pubmed]
  33. A capsaicin-receptor homologue with a high threshold for noxious heat. Caterina, M.J., Rosen, T.A., Tominaga, M., Brake, A.J., Julius, D. Nature (1999) [Pubmed]
  34. Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Barrachina, M.D., Martínez, V., Wang, L., Wei, J.Y., Taché, Y. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  35. A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1. Zhang, N., Inan, S., Inan, S., Cowan, A., Sun, R., Wang, J.M., Rogers, T.J., Caterina, M., Oppenheim, J.J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  36. Capsaicin inhibits in vitro and in vivo angiogenesis. Min, J.K., Han, K.Y., Kim, E.C., Kim, Y.M., Lee, S.W., Kim, O.H., Kim, K.W., Gho, Y.S., Kwon, Y.G. Cancer Res. (2004) [Pubmed]
  37. Molecular cloning of an N-terminal splice variant of the capsaicin receptor. Loss of N-terminal domain suggests functional divergence among capsaicin receptor subtypes. Schumacher, M.A., Moff, I., Sudanagunta, S.P., Levine, J.D. J. Biol. Chem. (2000) [Pubmed]
  38. Bone marrow transplantation reveals an essential synergy between neuronal and hemopoietic cell neurokinin production in pulmonary inflammation. Chavolla-Calderón, M., Bayer, M.K., Fontán, J.J. J. Clin. Invest. (2003) [Pubmed]
  39. A unique representation of heat allodynia in the human brain. Lorenz, J., Cross, D., Minoshima, S., Morrow, T., Paulson, P., Casey, K. Neuron (2002) [Pubmed]
  40. Rectal distention-induced colonic net water secretion in rats involves tachykinins, capsaicin sensory, and vagus nerves. Eutamene, H., Theodorou, V., Fioramonti, J., Bueno, L. Gastroenterology (1997) [Pubmed]
  41. Calcitonin gene-related peptide immunoreactive sensory and motor nerves of the rat, cat, and monkey esophagus. Rodrigo, J., Polak, J.M., Fernandez, L., Ghatei, M.A., Mulderry, P., Bloom, S.R. Gastroenterology (1985) [Pubmed]
  42. Distribution and characterization of calcitonin gene-related peptide immunoreactivity in the digestive system of normal and capsaicin-treated rats. Sternini, C., Reeve, J.R., Brecha, N. Gastroenterology (1987) [Pubmed]
WikiGenes - Universities