The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Endothelial dysfunction in Type 2 diabetes correlates with deregulated expression of the tail-anchored membrane protein SLMAP.

The Type 2 diabetic db/db mouse experiences vascular dysfunction typified by changes in the contraction and relaxation profiles of small mesenteric arteries (SMAs). Contractions of SMAs from the db/db mouse to the alpha1-adrenoceptor agonist phenylephrine (PE) were significantly enhanced, and acetylcholine (ACh)-induced relaxations were significantly depressed. Drug treatment of db/db mice with a nonthiazolidinedione peroxisome prolifetor-activated receptor-gamma agonist and insulin sensitizing agent 2-[2-(4-phenoxy-2-propylphenoxy)ethyl]indole-5-acetic acid (COOH) completely prevented the changes in endothelium-dependent relaxation, but, with the discontinuation of therapy, endothelial dysfunction returned. Dysfunctional SMAs were found to specifically upregulate the expression of a 35-kDa isoform of sarcolemmal membrane-associated protein (SLMAP), which is a component of the excitation-contraction coupling apparatus and implicated in the regulation of membrane function in muscle cells. Real-time PCR revealed high SLMAP mRNA levels in the db/db microvasculature, which were markedly downregulated during COOH treatment but elevated again when drug therapy was discontinued. These data reveal that the microvasculature in db/db mice undergoes significant changes in vascular function with the endothelial component of vascular dysfunction specifically correlating with the overexpression of SLMAP. Thus changes in SLMAP expression may be an important indicator for microvascular disease associated with Type 2 diabetes.[1]


  1. Endothelial dysfunction in Type 2 diabetes correlates with deregulated expression of the tail-anchored membrane protein SLMAP. Ding, H., Howarth, A.G., Pannirselvam, M., Anderson, T.J., Severson, D.L., Wiehler, W.B., Triggle, C.R., Tuana, B.S. Am. J. Physiol. Heart Circ. Physiol. (2005) [Pubmed]
WikiGenes - Universities