The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Distinct effects of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 on insulin secretion and gut motility.

Glucose-induced insulin secretion from pancreatic beta-cells depends critically on ATP-sensitive K(+) channel (K(ATP) channel) activity, but it is not known whether K(ATP) channels are involved in the potentiation of insulin secretion by glucose-dependent insulinotropic polypeptide (GIP). In mice lacking K(ATP) channels (Kir6.2(-/-) mice), we found that pretreatment with GIP in vivo failed to blunt the rise in blood glucose levels after oral glucose load. In Kir6.2(-/-) mice, potentiation of insulin secretion by GIP in vivo was markedly attenuated, indicating that K(ATP) channels are essential in the insulinotropic effect of GIP. In contrast, pretreatment with glucagon-like peptide-1 (GLP-1) in Kir6.2(-/-) mice potentiated insulin secretion and blunted the rise in blood glucose levels. We also found that GLP-1 inhibited gut motility whereas GIP did not. Perfusion experiments of Kir6.2(-/-) mice revealed severely impaired potentiation of insulin secretion by 1 nmol/l GIP and substantial potentiation by 1 nmol/l GLP-1. Although both GIP and GLP-1 increase the intracellular cAMP concentration and potentiate insulin secretion, these results demonstrate that the GLP-1 and GIP signaling pathways involve the K(ATP) channel differently.[1]

References

  1. Distinct effects of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 on insulin secretion and gut motility. Miki, T., Minami, K., Shinozaki, H., Matsumura, K., Saraya, A., Ikeda, H., Yamada, Y., Holst, J.J., Seino, S. Diabetes (2005) [Pubmed]
 
WikiGenes - Universities