The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

ER Ca2+ depletion triggers apoptotic signals for endoplasmic reticulum (ER) overload response induced by overexpressed reticulon 3 (RTN3/HAP).

Perturbance of endoplasmic reticulum (ER) function, either by the mutant proteins not folding correctly, or by an excessive accumulation of proteins in the organelle, will lead to the unfolded protein response (UPR) or ER overload response (EOR). The signal-transducing pathways for UPR have been identified, whereas the pathway for EOR remains to be elucidated. Our previous study demonstrated that the overexpression of reticulon 3 (RTN3, also named HAP, homologue of ASY protein) caused apoptosis with the depletion of ER Ca(2+) stores. In present research, we characterized RTN3 as a novel EOR-induced protein, triggering the apoptotic signals through the release of ER Ca(2+) and the elevation of cytosolic Ca(2+). Our studies showed that overexpressed RTN3 induced EOR, eliciting ER-specific apoptosis with activation of caspase-12 and mitochondrial dysfunction through ER Ca(2+) depletion and the sustained elevation of cytosolic Ca(2+). Furthermore, we demonstrated that overexpressed RTN3 and stimuli that activate both EOR and UPR, not UPR only, were able to induce up-regulation of inducible nitric oxide synthase (iNOS) in HeLa cells through ER Ca(2+) release and reactive oxygen intermediates (ROIs), resulting in endogenous calcium-dependent nitric oxide protecting cells against ER specific apoptosis, which suggested that the nitric oxide and iNOS represented a likely protective response to EOR, not the UPR. These results supported that the release of ER Ca(2+) stores triggered the initial signal-transducing pathways for EOR induced by overexpressed RTN3.[1]

References

 
WikiGenes - Universities