The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Control of cyclin-dependent kinase 5 (Cdk5) activity by glutamatergic regulation of p35 stability.

Although the roles of cyclin-dependent kinase 5 (Cdk5) in neurodevelopment and neurodegeneration have been studied extensively, regulation of Cdk5 activity has remained largely unexplored. We report here that glutamate, acting via NMDA or kainate receptors, can induce a transient Ca(2+)/calmodulin-dependent activation of Cdk5 that results in enhanced autophosphorylation and proteasome-dependent degradation of a Cdk5 activator p35, and thus ultimately down-regulation of Cdk5 activity. The relevance of this regulation to synaptic plasticity was examined in hippocampal slices using theta burst stimulation. p35(-/-) mice exhibited a lower threshold for induction of long-term potentiation. Thus excitatory glutamatergic neurotransmission regulates Cdk5 activity through p35 degradation, and this pathway may contribute to plasticity.[1]

References

  1. Control of cyclin-dependent kinase 5 (Cdk5) activity by glutamatergic regulation of p35 stability. Wei, F.Y., Tomizawa, K., Ohshima, T., Asada, A., Saito, T., Nguyen, C., Bibb, J.A., Ishiguro, K., Kulkarni, A.B., Pant, H.C., Mikoshiba, K., Matsui, H., Hisanaga, S. J. Neurochem. (2005) [Pubmed]
 
WikiGenes - Universities