The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Cdk5r1  -  cyclin-dependent kinase 5, regulatory...

Mus musculus

Synonyms: CDK5 activator 1, Cdk5r, Cyclin-dependent kinase 5 activator 1, Cyclin-dependent kinase 5 regulatory subunit 1, D11Bwg0379e, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cdk5r1

 

Psychiatry related information on Cdk5r1

 

High impact information on Cdk5r1

  • Hence, our findings suggest that inside-out layering requires distinct functions of Reelin and p35/Cdk5 signaling, with the latter being important for proper glia-guided migration [10].
  • In the p35(-/-) neocortex, the classic modes of radial migration--somal translocation and locomotion--were largely replaced by a distinct mode of migration: branched migration [10].
  • Current mouse models expressing p25, however, fail to rigorously recapitulate these phenotypes in vivo [11].
  • Here, we generated inducible transgenic mouse lines overexpressing p25 in the postnatal forebrain [11].
  • Finally, phosphorylation of both proteins was undetectable in p35-deficient mice [12].
 

Chemical compound and disease context of Cdk5r1

  • The effects of insulin, cycloheximide and phalloidin on the content of actin and p35 in extracts prepared from the nuclear fraction of Krebs II ascites cells [13].
 

Biological context of Cdk5r1

 

Anatomical context of Cdk5r1

  • We find that low levels of p25 during development induce a partial rescue of the p35-/- phenotype in several brain regions analyzed, including a rescue of cell positioning of a subset of neurons in the neocortex [17].
  • These results indicate that Cdk5/p35 and Reelin signaling regulates the selective mode of neuronal migration in the developing mouse hindbrain [18].
  • Mice lacking Cdk5/p35 display migration defects of the cortical neurons in the cerebrum and cerebellum [18].
  • The unusual presence of nonphosphorylated neurofilament (NF) in aberrant axon fascicles and the relocation of tau and MAP2B from cell bodies and proximal neuronal processes to more distal sites of the neuropil in p35-/- mouse brain implicate p35 in neuronal trafficking, particularly in dynein-driven retrograde transport [19].
  • In the double-null mice of p35 and either Dab1 or Reelin, additional migration defects occur in the Purkinje cells in the cerebellum and in the pyramidal neurons in the hippocampus [20].
 

Associations of Cdk5r1 with chemical compounds

 

Physical interactions of Cdk5r1

 

Enzymatic interactions of Cdk5r1

  • The ability of Cdk5 to phosphorylate substrates is dependent on activation by its neuronal-specific activators p35 and p39 [28].
 

Regulatory relationships of Cdk5r1

 

Other interactions of Cdk5r1

  • Our data suggest that focal deregulation of cdk5/p25 in axons leads to cytoskeletal abnormalities and eventual neurodegeneration in NPC [30].
  • Cyclin-dependent kinase 5/p35 contributes synergistically with Reelin/Dab1 to the positioning of facial branchiomotor and inferior olive neurons in the developing mouse hindbrain [18].
  • The brain-specific activator p35 allows Cdk5 to escape inhibition by p27Kip1 in neurons [31].
  • Caspase inhibition protected p23 from degradation in several cell lines [32].
  • Here, IL-12-deficient p35(- / -) and p40(- / -) mice were used to examine the role of endogenous IL-12 and p40 homodimer during in vivo development of exogenous antigen-driven responses [33].
 

Analytical, diagnostic and therapeutic context of Cdk5r1

References

  1. Targeted expression of anti-apoptotic protein p35 in oligodendrocytes reduces delayed demyelination and functional impairment after spinal cord injury. Tamura, M., Nakamura, M., Ogawa, Y., Toyama, Y., Miura, M., Okano, H. Glia (2005) [Pubmed]
  2. Callosal axon guidance defects in p35(-/-) mice. Kwon, Y.T., Tsai, L.H., Crandall, J.E. J. Comp. Neurol. (1999) [Pubmed]
  3. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. Casares, N., Pequignot, M.O., Tesniere, A., Ghiringhelli, F., Roux, S., Chaput, N., Schmitt, E., Hamai, A., Hervas-Stubbs, S., Obeid, M., Coutant, F., Métivier, D., Pichard, E., Aucouturier, P., Pierron, G., Garrido, C., Zitvogel, L., Kroemer, G. J. Exp. Med. (2005) [Pubmed]
  4. Specificity of response to viral proteins in horses infected with equine infectious anemia virus. Charman, H., Long, C., Coggins, L. Infect. Immun. (1979) [Pubmed]
  5. A 25-kDa protein is associated with the envelopes of occluded baculovirus virions. Russell, R.L., Rohrmann, G.F. Virology (1993) [Pubmed]
  6. Sexual dimorphisms in the effect of low-level p25 expression on synaptic plasticity and memory. Ris, L., Angelo, M., Plattner, F., Capron, B., Errington, M.L., Bliss, T.V., Godaux, E., Giese, K.P. Eur. J. Neurosci. (2005) [Pubmed]
  7. Improved reversal learning and altered fear conditioning in transgenic mice with regionally restricted p25 expression. Angelo, M., Plattner, F., Irvine, E.E., Giese, K.P. Eur. J. Neurosci. (2003) [Pubmed]
  8. Control of cortical neuron migration and layering: cell and non cell-autonomous effects of p35. Hammond, V., Tsai, L.H., Tan, S.S. J. Neurosci. (2004) [Pubmed]
  9. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Ahlijanian, M.K., Barrezueta, N.X., Williams, R.D., Jakowski, A., Kowsz, K.P., McCarthy, S., Coskran, T., Carlo, A., Seymour, P.A., Burkhardt, J.E., Nelson, R.B., McNeish, J.D. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  10. Layering defect in p35 deficiency is linked to improper neuronal-glial interaction in radial migration. Gupta, A., Sanada, K., Miyamoto, D.T., Rovelstad, S., Nadarajah, B., Pearlman, A.L., Brunstrom, J., Tsai, L.H. Nat. Neurosci. (2003) [Pubmed]
  11. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Cruz, J.C., Tseng, H.C., Goldman, J.A., Shih, H., Tsai, L.H. Neuron (2003) [Pubmed]
  12. Cophosphorylation of amphiphysin I and dynamin I by Cdk5 regulates clathrin-mediated endocytosis of synaptic vesicles. Tomizawa, K., Sunada, S., Lu, Y.F., Oda, Y., Kinuta, M., Ohshima, T., Saito, T., Wei, F.Y., Matsushita, M., Li, S.T., Tsutsui, K., Hisanaga, S., Mikoshiba, K., Takei, K., Matsui, H. J. Cell Biol. (2003) [Pubmed]
  13. The effects of insulin, cycloheximide and phalloidin on the content of actin and p35 in extracts prepared from the nuclear fraction of Krebs II ascites cells. Almås, B., Vedeler, A., Pryme, I.F. Mol. Cell. Biochem. (1992) [Pubmed]
  14. Molecular cloning and chromosomal mapping of the mouse gene encoding cyclin-dependent kinase 5 regulatory subunit p35. Ohshima, T., Kozak, C.A., Nagle, J.W., Pant, H.C., Brady, R.O., Kulkarni, A.B. Genomics (1996) [Pubmed]
  15. Cdk5 inhibits anterograde axonal transport of neurofilaments but not that of tau by inhibition of mitogen-activated protein kinase activity. Moran, C.M., Donnelly, M., Ortiz, D., Pant, H.C., Mandelkow, E.M., Shea, T.B. Brain Res. Mol. Brain Res. (2005) [Pubmed]
  16. Involvement of cyclin dependent kinase 5 and its activator p35 in staurosporine-induced apoptosis of cortical neurons. Zhang, B.F., Peng, F.F., Zhang, W., Shen, H., Wu, S.B., Wu, D.C. Acta Pharmacol. Sin. (2004) [Pubmed]
  17. Partial rescue of the p35-/- brain phenotype by low expression of a neuronal-specific enolase p25 transgene. Patzke, H., Maddineni, U., Ayala, R., Morabito, M., Volker, J., Dikkes, P., Ahlijanian, M.K., Tsai, L.H. J. Neurosci. (2003) [Pubmed]
  18. Cyclin-dependent kinase 5/p35 contributes synergistically with Reelin/Dab1 to the positioning of facial branchiomotor and inferior olive neurons in the developing mouse hindbrain. Ohshima, T., Ogawa, M., Takeuchi, K., Takahashi, S., Kulkarni, A.B., Mikoshiba, K. J. Neurosci. (2002) [Pubmed]
  19. Decreased cyclin-dependent kinase 5 (cdk5) activity is accompanied by redistribution of cdk5 and cytoskeletal proteins and increased cytoskeletal protein phosphorylation in p35 null mice. Hallows, J.L., Chen, K., DePinho, R.A., Vincent, I. J. Neurosci. (2003) [Pubmed]
  20. Synergistic contributions of cyclin-dependant kinase 5/p35 and Reelin/Dab1 to the positioning of cortical neurons in the developing mouse brain. Ohshima, T., Ogawa, M., Veeranna, n.u.l.l., Hirasawa, M., Longenecker, G., Ishiguro, K., Pant, H.C., Brady, R.O., Kulkarni, A.B., Mikoshiba, K. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  21. Increased activity of cyclin-dependent kinase 5 leads to attenuation of cocaine-mediated dopamine signaling. Takahashi, S., Ohshima, T., Cho, A., Sreenath, T., Iadarola, M.J., Pant, H.C., Kim, Y., Nairn, A.C., Brady, R.O., Greengard, P., Kulkarni, A.B. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  22. Control of cyclin-dependent kinase 5 (Cdk5) activity by glutamatergic regulation of p35 stability. Wei, F.Y., Tomizawa, K., Ohshima, T., Asada, A., Saito, T., Nguyen, C., Bibb, J.A., Ishiguro, K., Kulkarni, A.B., Pant, H.C., Mikoshiba, K., Matsui, H., Hisanaga, S. J. Neurochem. (2005) [Pubmed]
  23. Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3. Li, B.S., Zhang, L., Takahashi, S., Ma, W., Jaffe, H., Kulkarni, A.B., Pant, H.C. EMBO J. (2002) [Pubmed]
  24. Cdk5/p35 phosphorylates mSds3 and regulates mSds3-mediated repression of transcription. Li, Z., David, G., Hung, K.W., DePinho, R.A., Fu, A.K., Ip, N.Y. J. Biol. Chem. (2004) [Pubmed]
  25. A novel disruption of cortical development in p35(-/-) mice distinct from reeler. Kwon, Y.T., Tsai, L.H. J. Comp. Neurol. (1998) [Pubmed]
  26. Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. Fu, A.K., Fu, W.Y., Ng, A.K., Chien, W.W., Ng, Y.P., Wang, J.H., Ip, N.Y. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  27. Novel interaction between nuclear co-activator CBP and the CDK5 activator binding protein - C53. Yin, X., Warner, D.R., Roberts, E.A., Pisano, M.M., Greene, R.M. Int. J. Mol. Med. (2005) [Pubmed]
  28. p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. Ko, J., Humbert, S., Bronson, R.T., Takahashi, S., Kulkarni, A.B., Li, E., Tsai, L.H. J. Neurosci. (2001) [Pubmed]
  29. Tumor necrosis factor-alpha regulates cyclin-dependent kinase 5 activity during pain signaling through transcriptional activation of p35. Utreras, E., Futatsugi, A., Rudrabhatla, P., Keller, J., Iadarola, M.J., Pant, H.C., Kulkarni, A.B. J. Biol. Chem. (2009) [Pubmed]
  30. Deregulation of cdk5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-Pick type C murine model. Bu, B., Li, J., Davies, P., Vincent, I. J. Neurosci. (2002) [Pubmed]
  31. The brain-specific activator p35 allows Cdk5 to escape inhibition by p27Kip1 in neurons. Lee, M.H., Nikolic, M., Baptista, C.A., Lai, E., Tsai, L.H., Massagué, J. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  32. The co-chaperone p23 is degraded by caspases and the proteasome during apoptosis. Mollerup, J., Berchtold, M.W. FEBS Lett. (2005) [Pubmed]
  33. Endogenous IL-12 synthesis is not required to prevent hyperexpression of type 2 cytokine and antibody responses. Rempel, J.D., Lewkowich, I.P., HayGlass, K.T. Eur. J. Immunol. (2000) [Pubmed]
  34. Cdk5/p35 expression in the mouse ovary. Lee, K.Y., Rosales, J.L., Lee, B.C., Chung, S.H., Fukui, Y., Lee, N.S., Lee, K.Y., Jeong, Y.G. Mol. Cells (2004) [Pubmed]
  35. Activators of protein kinase C induce p34cdc2 histone H1 kinase stimulation in Swiss 3T3 fibroblasts. Takuwa, N., Zhou, W., Kumada, M., Takuwa, Y. Biochem. Biophys. Res. Commun. (1992) [Pubmed]
 
WikiGenes - Universities