Improvement of nikkomycin production by enhanced copy of sanU and sanV in Streptomyces ansochromogenes and characterization of a novel glutamate mutase encoded by sanU and sanV.
Previous studies revealed that two genes-sanU and sanV were associated with nikkomycin biosynthesis in Streptomyces ansochromogenes. A plasmid used to increase an extra copy of sanU and sanV was constructed and introduced into wild-type strain. HPLC results showed that nikkomycin production of recombinant strain was about 1.8 fold than that of wild-type strain. RT-PCR analysis indicated that the transcriptional level of sanU and sanV in this recombinant strain was about two folds than that of wild-type strain. The sanU and sanV were expressed in E. coli BL21 (DE3). SanU and SanV were purified individually. SanU and SanV assembled with coenzyme B12 to form a complete enzyme in vitro, which showed glutamate mutase activity. The glutamate mutase converted L-glutamate toL-threo-beta-Methylaspartic acid, and then l-threo-beta-Methylaspartic acid was probably deaminated to form 2-oxo-3-methylsuccinic acid to join biosynthetic pathway of the peptidyl moiety HPHT in S. ansochromogenes. SanU is the coenzyme B12-binding component and more than two folds of SanU are required for maximal enzyme activity. The optimal pH and temperature for the formed enzyme are 7.5-8.5 and 35-42 degrees C, respectively. Sulfhydryl compounds are important for activity of the reassembled enzyme.[1]References
- Improvement of nikkomycin production by enhanced copy of sanU and sanV in Streptomyces ansochromogenes and characterization of a novel glutamate mutase encoded by sanU and sanV. Li, Y., Ling, H., Li, W., Tan, H. Metab. Eng. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg