The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

2-Arachidonoylglycerol stimulates activator protein-1-dependent transcriptional activity and enhances epidermal growth factor-induced cell transformation in JB6 P+ cells.

2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid, and it plays a critical role in cannabinoid receptor-mediated cell signaling. Although 2-AG was shown to induce ERK activation via the cannabinoid receptor 1 (CB1), only a nonspecific CB receptor agonist and antagonist was used in those studies. Whether cannabinoid receptor 2 (CB2) is involved in 2-AG- induced ERK activation is still unclear. Moreover, whether 2-AG is involved in mediation of AP-1 activity and cell transformation is also not known. In the present study, we show that 2-AG stimulates AP-1-dependent transcriptional activity and enhances epidermal growth factor-induced cell transformation in mouse epidermal JB6 P+ Cl41 cells. Using JB6 P+ C141 cells, stably transfected with an AP-1 luciferase reporter, we found that 10 microm 2-AG induced up to a 3-fold stimulation of AP-1 transcriptional activity. The AP-1 stimulation appeared to be mediated by ERK but not JNK or p38 kinase. PD98059, a specific inhibitor of MEK1, almost completely blocked 2-AG-induced ERK phosphorylation and AP-1 activation. Using CB1/2-/- murine embryonic fibroblasts, we present the first direct evidence that both cannabinoid receptors 1 and 2 (CB1/2) are involved in 2-AG-induced ERK activation. 2-AG could not stimulate ERK phosphorylation or Fyn kinase activity in dominant negative Fyn. In addition, the Fyn inhibitor PP2 blocked 2-AG- induced Fyn kinase activity and ERK phosphorylation and activity. Small interfering RNA Fyn also suppressed 2-AG- induced ERK phosphorylation. Interestingly, 2-AG enhanced epidermal growth factor- induced AP-1 DNA binding and cell transformation. Taken together, our data provide direct evidence suggesting that 2-AG may have a novel role in cell transformation and carcinogenesis in a signaling pathway involving CB1/2 and activation of Fyn, ERKs, and AP-1.[1]


WikiGenes - Universities