The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 Laver,  
 

Coupled calcium release channels and their regulation by luminal and cytosolic ions.

Contraction in skeletal and cardiac muscle occurs when Ca(2+) is released from the sarcoplasmic reticulum (SR) through ryanodine receptor (RyR) Ca(2+) release channels. Several isoforms of the RyR exist throughout the animal kingdom, which are modulated by ATP, Ca(2+) and Mg(2+) in the cytoplasm and by Ca(2+) in the lumen of the SR. This review brings to light recent findings on their mechanisms of action in the mammalian isoforms RyR-1 and RyR-2 with an emphasis on RyR-1 from skeletal muscle. Cytoplasmic Mg(2+) is a potent RyR antagonist that binds to two classes of cytoplasmic site, identified as low-affinity, non-specific inhibition sites and high-affinity Ca(2+) activation sites (A-sites). Mg(2+) inhibition at the A-sites is very sensitive to the cytoplasmic and luminal milieu. Cytoplasmic Ca(2+), Mg(2+) and monovalent cations compete for the A-sites. In isolated RyRs, luminal Ca(2+) alters the Mg(2+) affinity of the A-site by an allosteric mechanism mediated by luminal sites. However, in close-packed RyR arrays luminal Ca(2+) can also compete with cytoplasmic ions for the A-site. Activation of RyRs by luminal Ca(2+) has been attributed to either Ca(2+) feedthrough to A-sites or to Ca(2+) regulatory sites on the luminal side of the RyR. As yet there is no consensus on just how luminal Ca(2+) alters RyR activation. Recent evidence indicates that both mechanisms operate and are likely to be important. Allosteric regulation of A-site Mg(2+) affinity could trigger Ca(2+) release, which is reinforced by Ca(2+) feedthrough.[1]

References

 
WikiGenes - Universities