The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The protective effect of L-cysteine and glutathione on the adult and aged rat brain (Na+,K+)-ATPase and Mg2+-ATPase activities in galactosemia in vitro.

The aim of this study was to evaluate whether the addition of the antioxidants L-cysteine (Cys) or the reduced glutathione (GSH) could reverse the alterations of brain total antioxidant status (TAS) and the modulated activities of the enzymes (Na+,K+)-ATPase, and Mg2+-ATPase in adult or aged rat brain homogenates induced by galactosemia in vitro. Mixture A [mix. A: galactose-1-phosphate (Gal-1-P, 2 mM) plus galactitol (Galtol, 2 mM) plus galactose ( Gal, 4 mM) = classical galactosemia] or mixture B [mix. B: Galtol (2 mM) plus Gal (1 mM) = galactokinase deficiency galactosemia] were preincubated in the presence or absence of Cys (0.83 mM) or GSH (0.83 mM) with adult or aged brain homogenates at 37 degrees C for 1 h. TAS and the enzyme activities were determined spectrophotometrically. Mix. A or mix. B preincubation with the adult brain resulted in a significant (Na+,K+)-ATPase inhibition (-30%) and a Mg2+-ATPase stimulation (+300% and +33%, respectively), whereas lower modifications of the enzyme activities (p < 0.001) were found in the aged brain. Gal mixtures decreased TAS by 40% (p < 0.001) and by 20% (p < 0.01) in adult and aged samples, respectively. The antioxidants significantly increased TAS resulting in the reversion of (Na+,K+)-ATPase inhibition and Mg2+-ATPase stimulation by mix. B only. The inhibitory effect of Gal and its derivatives on brain (Na+,K+)-ATPase and their stimulatory effect on Mg2+-ATPase are being decreased with age, probably due to the producion of free radicals. Cys and GSH increased TAS resulting in a reversion of the inhibited (Na+,K+)-ATPase in both models of the in vitro galactosemia and the stimulated Mg2+-ATPase in galactokinase deficiency galactosemia only.[1]


WikiGenes - Universities