The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

dulcitol     (2R,3S,4R,5S)-hexane- 1,2,3,4,5,6-hexol

Synonyms: Euonymit, dulcite, dulcose, Melampyrin, Melampyrit, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of galactitol

 

High impact information on galactitol

  • Moreover, galactose feeding results in changes in tissue AR activities that are not related, temporally or quantitatively, to the alterations in tissue AR mRNA or galactitol levels [6].
  • There were no large differences observed in survival sensitivities anywhere in the cell cycle, suggesting that galactitol was not a cell-cycle phase-specific agent [7].
  • Synchronized mitotic and G1 phase cells were equally sensitive to galacitol, with approximately 90% of the cells killed by 1-hour exposures to 12.5 mug galactitol/ml [7].
  • Cells in mitosis or G1 phases of the cell cycle at the time of treatment with galacitol progressed normally into the next stage of the cell cycle; however, cells exposed to galactitol in S or G2 phases exhibited dose-dependent delays in those phases of the cell cycle [7].
  • In addition, both galactose and galactitol accumulated in tissues of GK-deficient mice [3].
 

Chemical compound and disease context of galactitol

 

Biological context of galactitol

 

Anatomical context of galactitol

 

Associations of galactitol with other chemical compounds

 

Gene context of galactitol

 

Analytical, diagnostic and therapeutic context of galactitol

References

  1. Feedback inhibition of aldose reductase gene expression in rat renal medulla. Galactitol accumulation reduces enzyme mRNA levels and depletes cellular inositol content. Bondy, C., Cowley, B.D., Lightman, S.L., Kador, P.F. J. Clin. Invest. (1990) [Pubmed]
  2. NIH conference. Aldose reductase and complications of diabetes. Cogan, D.G., Kinoshita, J.H., Kador, P.F., Robison, G., Datilis, M.B., Cobo, L.M., Kupfer, C. Ann. Intern. Med. (1984) [Pubmed]
  3. A mouse model of galactose-induced cataracts. Ai, Y., Zheng, Z., O'Brien-Jenkins, A., Bernard, D.J., Wynshaw-Boris, T., Ning, C., Reynolds, R., Segal, S., Huang, K., Stambolian, D. Hum. Mol. Genet. (2000) [Pubmed]
  4. Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. Nobelmann, B., Lengeler, J.W. J. Bacteriol. (1996) [Pubmed]
  5. In vivo evidence of brain galactitol accumulation in an infant with galactosemia and encephalopathy. Berry, G.T., Hunter, J.V., Wang, Z., Dreha, S., Mazur, A., Brooks, D.G., Ning, C., Zimmerman, R.A., Segal, S. J. Pediatr. (2001) [Pubmed]
  6. Effects of galactose feeding on aldose reductase gene expression. Wu, R.R., Lyons, P.A., Wang, A., Sainsbury, A.J., Chung, S., Palmer, T.N. J. Clin. Invest. (1993) [Pubmed]
  7. Cell killing, kinetics, and recovery responses induced by 1,2:5,6-dianhydrogalactitol in dividing and nondividiing cells in vitro. Barranco, S.C., Flournoy, D.R. J. Natl. Cancer Inst. (1977) [Pubmed]
  8. Pasteurella multocida subsp. multocida and P. multocida subsp. septica differentiation by PCR fingerprinting and alpha-glucosidase activity. Hunt Gerardo, S., Citron, D.M., Claros, M.C., Fernandez, H.T., Goldstein, E.J. J. Clin. Microbiol. (2001) [Pubmed]
  9. NMR structure of the enzyme GatB of the galactitol-specific phosphoenolpyruvate-dependent phosphotransferase system and its interaction with GatA. Volpon, L., Young, C.R., Matte, A., Gehring, K. Protein Sci. (2006) [Pubmed]
  10. Galactose metabolism in mice with galactose-1-phosphate uridyltransferase deficiency: sucklings and 7-week-old animals fed a high-galactose diet. Ning, C., Reynolds, R., Chen, J., Yager, C., Berry, G.T., Leslie, N., Segal, S. Mol. Genet. Metab. (2001) [Pubmed]
  11. Plasma galactose and galactitol concentration in patients with galactose-1-phosphate uridyltransferase deficiency galactosemia: determination by gas chromatography/mass spectrometry. Ning, C., Segal, S. Metab. Clin. Exp. (2000) [Pubmed]
  12. Pathways for the utilization of N-acetyl-galactosamine and galactosamine in Escherichia coli. Brinkkötter, A., Klöss, H., Alpert, C., Lengeler, J.W. Mol. Microbiol. (2000) [Pubmed]
  13. Galactose and galactitol in the urine of children with compound heterozygosity for Duarte variant and classical galactosemia (GtD/gt) after an oral galactose load. Schwarz, H.P., Schaefer, T., Bachmann, C. Clin. Chem. (1985) [Pubmed]
  14. Analysis of a 1600-kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo. Charles, T.C., Finan, T.M. Genetics (1991) [Pubmed]
  15. Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping. Lengeler, J. J. Bacteriol. (1975) [Pubmed]
  16. Genotypic exclusion: a novel relationship between the ribitol-arabitol and galactitol genes of E. coli. Link, C.D., Reiner, A.M. Mol. Gen. Genet. (1983) [Pubmed]
  17. Galactosemic neuropathy in transgenic mice for human aldose reductase. Yagihashi, S., Yamagishi, S., Wada, R., Sugimoto, K., Baba, M., Wong, H.G., Fujimoto, J., Nishimura, C., Kokai, Y. Diabetes (1996) [Pubmed]
  18. Effect of galactose and glucose levels and sorbinil treatment on myo-inositol metabolism and Na+-K+ pump activity in cultured neuroblastoma cells. Yorek, M.A., Dunlap, J.A., Leeney, E.M. Diabetes (1989) [Pubmed]
  19. An aldose redutase inhibitor prevents the intimal thickening in coronary arteries of galactose-fed beagle dogs. Kasuya, Y., Ito, M., Nakamura, J., Hamada, Y., Nakayama, M., Chaya, S., Komori, T., Naruse, K., Nakashima, E., Kato, K., Koh, N., Hotta, N. Diabetologia (1999) [Pubmed]
  20. Diabetic-like retinopathy ameliorated with the aldose reductase inhibitor WAY-121,509. Robinson, W.G., Laver, N.M., Jacot, J.L., Glover, J.P., Basso, M.D., Blouin, P., Hohman, T.C. Invest. Ophthalmol. Vis. Sci. (1996) [Pubmed]
  21. Changes in glutathione content and resistance to anticancer agents in human stomach cancer cells induced by treatments with melphalan in vitro. Barranco, S.C., Townsend, C.M., Weintraub, B., Beasley, E.G., MacLean, K.K., Shaeffer, J., Liu, N.H., Schellenberg, K. Cancer Res. (1990) [Pubmed]
  22. Coexistence of nerve conduction deficit with increased Na(+)-K(+)-ATPase activity in galactose-fed mice. Implications for polyol pathway and diabetic neuropathy. Calcutt, N.A., Tomlinson, D.R., Biswas, S. Diabetes (1990) [Pubmed]
  23. N-substituted spirosuccinimide, spiropyridazine, spiroazetidine, and acetic acid aldose reductase inhibitors derived from isoquinoline-1,3-diones. 2. Malamas, M.S., Hohman, T.C. J. Med. Chem. (1994) [Pubmed]
  24. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats. Winkler, B.S., Arnold, M.J., Brassell, M.A., Sliter, D.R. Invest. Ophthalmol. Vis. Sci. (1997) [Pubmed]
  25. The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on d-galactose. Seiboth, B., Hartl, L., Pail, M., Fekete, E., Karaffa, L., Kubicek, C.P. Mol. Microbiol. (2004) [Pubmed]
  26. Membrane-bound sorbitol dehydrogenase in human red blood cells. Studies in normal subjects and in enzyme-deficient subjects with congenital cataracts. Alvarez, A., Martínez, A., Ibarra, B., Medina, C., Bracamontes, M., Perea, J., Vaca, G. J. Inherit. Metab. Dis. (1993) [Pubmed]
  27. NADPH-dependent reductases and polyol formation in human leukemia cell lines. Sato, S., Secchi, E.F., Sakurai, S., Ohta, N., Fukase, S., Lizak, M.J. Chem. Biol. Interact. (2003) [Pubmed]
  28. Measurements of tissue sorbitol in diabetes mellitus: enzyme method versus gas-liquid chromatography. Malone, J.I., Lowitt, S. Metab. Clin. Exp. (1992) [Pubmed]
  29. Galactose-induced cataract formation in guinea pigs: morphologic changes and accumulation of galactitol. Mackic, J.B., Ross-Cisneros, F.N., McComb, J.G., Bekhor, I., Weiss, M.H., Kannan, R., Zlokovic, B.V. Invest. Ophthalmol. Vis. Sci. (1994) [Pubmed]
  30. Stable isotope dilution analysis of galactitol in amniotic fluid: an accurate approach to the prenatal diagnosis of galactosemia. Jakobs, C., Warner, T.G., Sweetman, L., Nyhan, W.L. Pediatr. Res. (1984) [Pubmed]
  31. Apoptotic cell death in the lens epithelium of rat sugar cataract. Takamura, Y., Kubo, E., Tsuzuki, S., Akagi, Y. Exp. Eye Res. (2003) [Pubmed]
  32. Galactitol and galactonate in red blood cells of children with the Duarte/galactosemia genotype. Ficicioglu, C., Yager, C., Segal, S. Mol. Genet. Metab. (2005) [Pubmed]
  33. A new approach against sugar cataract through aldose reductase inhibitors. Banditelli, S., Boldrini, E., Vilardo, P.G., Cecconi, I., Cappiello, M., Dal Monte, M., Marini, I., Del Corso, A., Mura, U. Exp. Eye Res. (1999) [Pubmed]
 
WikiGenes - Universities