The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Uncoupling and endocytosis of 5-hydroxytryptamine 4 receptors. Distinct molecular events with different GRK2 requirements.

The 5-hydroxytryptamine type 4 receptors (5-HT4Rs) are involved in memory, cognition, feeding, respiratory control, and gastrointestinal motility through activation of a G(s)/cAMP pathway. We have shown that 5-HT4R undergoes rapid and profound homologous uncoupling in neurons. However, no significant uncoupling was observed in COS-7 or HEK293 cells, which expressed either no or a weak concentration of GRK2, respectively. High expression of GRK2 in neurons is likely to be the reason for this difference because overexpression of GRK2 in COS-7 and HEK293 cells reproduced rapid and profound uncoupling of 5-HT4R. We have also shown, for the first time, that GRK2 requirements for uncoupling and endocytosis were very different. Indeed, beta-arrestin/ dynamin-dependent endocytosis was observed in HEK293 cells without any need of GRK2 overexpression. In addition to this difference, uncoupling and beta-arrestin/ dynamin-dependent endocytosis were mediated through distinct mechanisms. Neither uncoupling nor beta-arrestin/ dynamin-dependent endocytosis required the serine and threonine residues localized within the specific C-terminal domains of the 5-HT4R splice variants. In contrast, a cluster of serines and threonines, common to all variants, was an absolute requirement for beta-arrestin/ dynamin-dependent receptor endocytosis, but not for receptor uncoupling. Furthermore, beta-arrestin/ dynamin-dependent endocytosis and uncoupling were dependent on and independent of GRK2 kinase activity, respectively. These results clearly demonstrate that the uncoupling and endocytosis of 5-HT4R require different GRK2 concentrations and involve distinct molecular events.[1]

References

  1. Uncoupling and endocytosis of 5-hydroxytryptamine 4 receptors. Distinct molecular events with different GRK2 requirements. Barthet, G., Gaven, F., Framery, B., Shinjo, K., Nakamura, T., Claeysen, S., Bockaert, J., Dumuis, A. J. Biol. Chem. (2005) [Pubmed]
 
WikiGenes - Universities