Direct activation of fission yeast adenylyl cyclase by heterotrimeric G protein gpa2.
Genetic studies on Schizosaccharomyces pombe adenylyl cyclase ( cyr1) have shown that its activity is positively regulated by a heterotrimetric G protein a subunit gpa2 and that the resulting increase in intracellular cAMP concentration causes inhibition of sexual development including mating and meiosis. However, molecular mechanism underlying this gpa2-dependent regulation of cyr1 remains to be clarified. Here, we show that gpa2 exhibits a direct and GTP-dependent binding to the Ras- associating domain (RAD) of cyr1, which is identified by a computer algorithm-based search of the cyr1 amino acid sequence. Overexpression of this RAD results in acceleration of the sexual development of fission yeast cells presumably by competitive sequestration of gpa2. Furthermore, cyr1 is activated in vitro by the addition of purified gpa2, which is converted to the active state by treatment with AlF4-. These results indicate a crucial role of the RAD as a direct binding site of gpa2 in activation of cyr1. Thus, RADs, which have been defined as a conserved motif shared among the Ras-family small G protein-associating domains, are for the first time shown to exhibit a functional association with a member of the heterotrimeric G proteins.[1]References
- Direct activation of fission yeast adenylyl cyclase by heterotrimeric G protein gpa2. Ogihara, H., Shima, F., Naito, K., Asato, T., Kariya, K., Kataoka, T. The Kobe journal of medical sciences. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg