The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Structure and mechanism of the lactose permease.

More than 20% of the genes sequenced thus far appear to encode polytopic transmembrane proteins involved in a multitude of critical functions, particularly energy and signal transduction. Many are important with regard to human disease (e.g., depression, diabetes, drug resistance), and many drugs are targeted to membrane transport proteins (e.g., fluoxetine and omeprazole). However, the number of crystal structures of membrane proteins, especially ion-coupled transporters, is very limited. Recently, an inward-facing conformer of the Escherichia coli lactose permease (LacY), a paradigm for the Major Facilitator Superfamily, which contains almost 4000 members, was solved at about 3.5 A in collaboration with Jeff Abramson and So Iwata at Imperial College London. This intensively studied membrane transport protein is composed of two pseudo-symmetrical 6-helix bundles with a large internal cavity containing bound sugar and open to the cytoplasm only. Based on the structure and a large body of biochemical and biophysical evidence, a mechanism is proposed in which the binding site is alternatively accessible to either side of the membrane.[1]

References

  1. Structure and mechanism of the lactose permease. Kaback, H.R. C. R. Biol. (2005) [Pubmed]
 
WikiGenes - Universities