The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

Z3235m  -  sensor protein

Escherichia coli O157:H7 str. EDL933

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Z3235m


Psychiatry related information on Z3235m


High impact information on Z3235m


Chemical compound and disease context of Z3235m


Biological context of Z3235m


Anatomical context of Z3235m


Associations of Z3235m with chemical compounds


Regulatory relationships of Z3235m


Other interactions of Z3235m

  • In bacteria and archaea the Amt structural genes (amtB) are invariably linked to glnK, which encodes a member of the P(II) signal transduction protein family, proteins that regulate many facets of nitrogen metabolism [31].
  • It has been previously shown that the EPEC eaeB (espB) gene encodes a secreted protein required for signal transduction and adherence, while eaeA encodes intimin, an EPEC membrane protein that mediates intimate adherence and contributes to focusing of cytoskeletal proteins beneath bacteria [32].
  • It is concluded that espA encodes an EPEC secreted protein that is necessary for activating epithelial signal transduction, intimate contact, and formation of attaching and effacing lesions, processes which are central to pathogenesis [32].
  • We constructed a nonpolar mutation in espD and found that the mutant is incapable of the signal transduction events that lead to activation of the putative intimin receptor in host cells and that the mutant fails to induce the attaching and effacing effect [33].
  • We have reconstituted the signal transduction system responsible for the negative regulation of the transcription of the Escherichia coli glnA gene, encoding glutamine synthetase, by glutamine [34].

Analytical, diagnostic and therapeutic context of Z3235m


  1. Cell cycle control by an essential bacterial two-component signal transduction protein. Quon, K.C., Marczynski, G.T., Shapiro, L. Cell (1996) [Pubmed]
  2. Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. RayChaudhuri, D., Park, J.T. Nature (1992) [Pubmed]
  3. Separation of signal transduction and adaptation functions of the aspartate receptor in bacterial sensing. Russo, A.F., Koshland, D.E. Science (1983) [Pubmed]
  4. Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Foley, E., O'Farrell, P.H. Genes Dev. (2003) [Pubmed]
  5. Regulation of competence-specific gene expression by Mec-mediated protein-protein interaction in Bacillus subtilis. Kong, L., Dubnau, D. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  6. Structural resemblance between the families of bacterial signal-transduction proteins and of G proteins revealed by graph theoretical techniques. Artymiuk, P.J., Rice, D.W., Mitchell, E.M., Willett, P. Protein Eng. (1990) [Pubmed]
  7. Behavioral analysis of single cells of Myxococcus xanthus in response to prey cells of Escherichia coli. McBride, M.J., Zusman, D.R. FEMS Microbiol. Lett. (1996) [Pubmed]
  8. Temporal and spatial regulation in prokaryotic cell cycle progression and development. Ryan, K.R., Shapiro, L. Annu. Rev. Biochem. (2003) [Pubmed]
  9. Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Rao, V.D., Misra, S., Boronenkov, I.V., Anderson, R.A., Hurley, J.H. Cell (1998) [Pubmed]
  10. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Kenny, B., DeVinney, R., Stein, M., Reinscheid, D.J., Frey, E.A., Finlay, B.B. Cell (1997) [Pubmed]
  11. Redox signal transduction: mutations shifting [2Fe-2S] centers of the SoxR sensor-regulator to the oxidized form. Hidalgo, E., Ding, H., Demple, B. Cell (1997) [Pubmed]
  12. Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease. Manson, M.D., Blank, V., Brade, G., Higgins, C.F. Nature (1986) [Pubmed]
  13. Signal transduction in human epithelial cells infected with attaching and effacing Escherichia coli in vitro. Dytoc, M., Fedorko, L., Sherman, P.M. Gastroenterology (1994) [Pubmed]
  14. Signal transduction between enteropathogenic Escherichia coli (EPEC) and epithelial cells: EPEC induces tyrosine phosphorylation of host cell proteins to initiate cytoskeletal rearrangement and bacterial uptake. Rosenshine, I., Donnenberg, M.S., Kaper, J.B., Finlay, B.B. EMBO J. (1992) [Pubmed]
  15. Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Tomomori, C., Tanaka, T., Dutta, R., Park, H., Saha, S.K., Zhu, Y., Ishima, R., Liu, D., Tong, K.I., Kurokawa, H., Qian, H., Inouye, M., Ikura, M. Nat. Struct. Biol. (1999) [Pubmed]
  16. The crystal structure of the Escherichia coli AmtB-GlnK complex reveals how GlnK regulates the ammonia channel. Conroy, M.J., Durand, A., Lupo, D., Li, X.D., Bullough, P.A., Winkler, F.K., Merrick, M. Proc. Natl. Acad. Sci. U.S.A. (2007) [Pubmed]
  17. Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Hess, J.F., Oosawa, K., Kaplan, N., Simon, M.I. Cell (1988) [Pubmed]
  18. Periplasmic interaction between two membrane regulatory proteins, ToxR and ToxS, results in signal transduction and transcriptional activation. DiRita, V.J., Mekalanos, J.J. Cell (1991) [Pubmed]
  19. A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Gilles-Gonzalez, M.A., Ditta, G.S., Helinski, D.R. Nature (1991) [Pubmed]
  20. Protein methylation in behavioural control mechanisms and in signal transduction. Springer, M.S., Goy, M.F., Adler, J. Nature (1979) [Pubmed]
  21. Structure of hisactophilin is similar to interleukin-1 beta and fibroblast growth factor. Habazettl, J., Gondol, D., Wiltscheck, R., Otlewski, J., Schleicher, M., Holak, T.A. Nature (1992) [Pubmed]
  22. Bioorganic synthesis of lipid-modified proteins for the study of signal transduction. Bader, B., Kuhn, K., Owen, D.J., Waldmann, H., Wittinghofer, A., Kuhlmann, J. Nature (2000) [Pubmed]
  23. Attractant signaling by an aspartate chemoreceptor dimer with a single cytoplasmic domain. Gardina, P.J., Manson, M.D. Science (1996) [Pubmed]
  24. Coordinate regulation of beta-lactamase induction and peptidoglycan composition by the amp operon. Tuomanen, E., Lindquist, S., Sande, S., Galleni, M., Light, K., Gage, D., Normark, S. Science (1991) [Pubmed]
  25. Specific expression of a tyrosine kinase gene, blk, in B lymphoid cells. Dymecki, S.M., Niederhuber, J.E., Desiderio, S.V. Science (1990) [Pubmed]
  26. Involvement of the epidermal growth factor receptor in the invasion of cultured mammalian cells by Salmonella typhimurium. Galán, J.E., Pace, J., Hayman, M.J. Nature (1992) [Pubmed]
  27. Diversity in chemotaxis mechanisms among the bacteria and archaea. Szurmant, H., Ordal, G.W. Microbiol. Mol. Biol. Rev. (2004) [Pubmed]
  28. CD19 has a potential CD77 (globotriaosyl ceramide)-binding site with sequence similarity to verotoxin B-subunits: implications of molecular mimicry for B cell adhesion and enterohemorrhagic Escherichia coli pathogenesis. Maloney, M.D., Lingwood, C.A. J. Exp. Med. (1994) [Pubmed]
  29. Guanylin stimulates regulated secretion from human neuroendocrine pancreatic cells. John, M., Wiedenmann, B., Kruhøffer, M., Adermann, K., Ankorina-Stark, I., Schlatter, E., Ahnert-Hilger, G., Forssmann, W.G., Kuhn, M. Gastroenterology (1998) [Pubmed]
  30. Characterization of two virulence proteins secreted by rabbit enteropathogenic Escherichia coli, EspA and EspB, whose maximal expression is sensitive to host body temperature. Abe, A., Kenny, B., Stein, M., Finlay, B.B. Infect. Immun. (1997) [Pubmed]
  31. Ammonium sensing in Escherichia coli. Role of the ammonium transporter AmtB and AmtB-GlnK complex formation. Javelle, A., Severi, E., Thornton, J., Merrick, M. J. Biol. Chem. (2004) [Pubmed]
  32. EspA, a protein secreted by enteropathogenic Escherichia coli, is required to induce signals in epithelial cells. Kenny, B., Lai, L.C., Finlay, B.B., Donnenberg, M.S. Mol. Microbiol. (1996) [Pubmed]
  33. A third secreted protein that is encoded by the enteropathogenic Escherichia coli pathogenicity island is required for transduction of signals and for attaching and effacing activities in host cells. Lai, L.C., Wainwright, L.A., Stone, K.D., Donnenberg, M.S. Infect. Immun. (1997) [Pubmed]
  34. Reversible uridylylation of the Escherichia coli PII signal transduction protein regulates its ability to stimulate the dephosphorylation of the transcription factor nitrogen regulator I (NRI or NtrC). Atkinson, M.R., Kamberov, E.S., Weiss, R.L., Ninfa, A.J. J. Biol. Chem. (1994) [Pubmed]
  35. Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance. Schuster, S.C., Swanson, R.V., Alex, L.A., Bourret, R.B., Simon, M.I. Nature (1993) [Pubmed]
  36. Protein secretion by enteropathogenic Escherichia coli is essential for transducing signals to epithelial cells. Kenny, B., Finlay, B.B. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  37. Characterization and binding specificity of the monomeric STAT3-SH2 domain. Haan, S., Hemmann, U., Hassiepen, U., Schaper, F., Schneider-Mergener, J., Wollmer, A., Heinrich, P.C., Grötzinger, J. J. Biol. Chem. (1999) [Pubmed]
  38. Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD. Nolden, L., Ngouoto-Nkili, C.E., Bendt, A.K., Krämer, R., Burkovski, A. Mol. Microbiol. (2001) [Pubmed]
  39. Human immunodeficiency virus type 1 Nef protein inhibits activation pathways in peripheral blood mononuclear cells and T-cell lines. Greenway, A., Azad, A., McPhee, D. J. Virol. (1995) [Pubmed]
WikiGenes - Universities