The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A novel mechanism for the suppression of a voltage-gated potassium channel by glucose-dependent insulinotropic polypeptide: protein kinase A-dependent endocytosis.

The mechanisms involved in glucose regulation of insulin secretion by ATP-sensitive (K(ATP)) and calcium-activated (K(CA)) potassium channels have been extensively studied, but less is known about the role of voltage-gated (K(V)) potassium channels in pancreatic beta-cells. The incretin hormone, glucose-dependent insulinotropic polypeptide (GIP) stimulates insulin secretion by potentiating events underlying membrane depolarization and exerting direct effects on exocytosis. In the present study, we identified a novel role for GIP in regulating K(V)1.4 channel endocytosis. In GIP receptor-expressing HEK293 cells, GIP reduced A-type peak ionic current amplitude of K(V)1.4 via activation of protein kinase A (PKA). Using mutant forms of K(V)1.4 with Ala-Ser/Thr substitutions in a potential PKA phosphorylation site, C-terminal phosphorylation was shown to be linked to GIP-mediated current amplitude decreases. Proteinase K digestion and immunocytochemical studies on mutant K(V)1.4 localization following GIP stimulation demonstrated phosphorylation-dependent rapid endocytosis of K(V)1. 4. Expression of K(V)1.4 protein was also demonstrated in human beta-cells; GIP treatment resulting in similar decreases in A-type potassium current peak amplitude to those in HEK293 cells. Transient overexpression in INS-1 beta-cells (clone 832/13) of wild-type (WT) K(V)1.4, or a T601A mutant form resistant to PKA phosphorylation, resulted in reduced glucose-stimulated insulin secretion; WT K(V)1.4 overexpression potentiated GIP-induced insulin secretion, whereas this response was absent in T601A cells. These results strongly support an important novel role for GIP in regulating K(V)1.4 cell surface expression and modulation of A-type potassium currents, which is likely to be critically important for its insulinotropic action.[1]


WikiGenes - Universities