The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A comparative study of the antioxidant/prooxidant activities of eugenol and isoeugenol with various concentrations and oxidation conditions.

Eugenol (compound in , 4-allyl-2-methyoxyphenol) and isoeugenol (compound in , 4-propenyl-2-methoxyphenol), both used as a flavor agent in cosmetic and food products, have both prooxidant and antioxidant activities. Their adverse effects such as allergic and inflammatory reaction may be due to their prooxidant activity. To clarify the mechanisms of their cytotoxicity and the factors affecting their antioxidant/prooxidant activities, we investigated the cytotoxicity, ROS production, and cellular glutathione (GSH) levels induced by eugenol and isoeugenol in a human submandibular cell line. The cytotoxicity (MTT method) of eugenol was 1 order of magnitude lower than that of isoeugenol (CC50: eugenol, 0.395 mM; isoeugenol, 0.0523 mM); and ROS production ( CDF staining) was induced significantly by isoeugenol, but not by eugenol. Under treatment with H2O2 (100 microM) plus horseradish peroxidase (1 microg/ml) for 30 min or with visible light irradiation for 5 min, eugenol caused biphasic ROS production characterized by enhanced at lower eugenol concentrations (5-10 microM) and decreased at higher concentrations (500 microM). In contrast, isoeugenol enhanced ROS production over a wide range of concentrations (5-500 microM). Isoeugenol at 1000 microM significantly reduced GSH levels compared with eugenol at the same concentration. The high cytotoxicity of isoeugenol may be attributed to its induction of high ROS production and low GSH levels, possibly as a result of benzyl radical formation. In contrast, the cytotoxicity of eugenol is likely to be mediated by ROS-independent mechanisms, possibly involving phenoxyl radicals and/or eugenol quinone methide.[1]

References

  1. A comparative study of the antioxidant/prooxidant activities of eugenol and isoeugenol with various concentrations and oxidation conditions. Atsumi, T., Fujisawa, S., Tonosaki, K. Toxicology in vitro : an international journal published in association with BIBRA. (2005) [Pubmed]
 
WikiGenes - Universities