The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Retinal neovascularisation without ischaemia in the spontaneously diabetic Torii rat.

AIMS/HYPOTHESIS: The spontaneously diabetic Torii (SDT) rat has recently been established as a model of type 2 human diabetes mellitus. Male SDT rats develop severe diabetic ocular complications. This study investigated the nature of the ocular complications in this model and addressed the question of whether the SDT rat is a good model of human proliferative diabetic retinopathy. METHODS: Male SDT rats aged 50 weeks were studied for a period of 8 months. Under deep anaesthesia, one eye of each animal was enucleated following perfusion with fluorescein dextran and a retinal flat mount was prepared to study vascular structure. The other eye was enucleated and investigated histologically by haematoxylin-eosin and azan staining and by immunohistochemistry using antibodies against vascular endothelium (Griffonia simplicifolia isolectin B4 antibody) and vascular endothelial growth factor (VEGF). RESULTS: From the vascular structure study, 17 of 32 rats (53%) showed proliferative retinopathy without vascular non-perfusion. The histological study revealed traction retinal folds in rats with proliferative retinopathy. Azan staining showed some proliferative matrix in rats with normal retinal structure and those with proliferative retinopathy compared with normoglycaemic controls. Staining with Griffonia simplicifolia isolectin B4 antibody showed no specific vascular changes in any of the rats, while VEGF staining revealed higher immunoreactivity in the retina of rats with normal retinal structure and those with proliferative retinopathy, but only low immunoreactivity in the control animals. CONCLUSIONS/INTERPRETATION: There appear to be differences between the SDT rat model of diabetic retinopathy and human proliferative diabetic retinopathy, as the SDT rat develops retinal neovascularisation without retinal ischaemia. This very unique display of ocular neovascularisation may be caused by increased expression of VEGF.[1]

References

  1. Retinal neovascularisation without ischaemia in the spontaneously diabetic Torii rat. Yamada, H., Yamada, E., Higuchi, A., Matsumura, M. Diabetologia (2005) [Pubmed]
 
WikiGenes - Universities