The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Griffonia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Griffonia

 

High impact information on Griffonia

  • Phenotypically corrected transformants were separated from mutants in a fluorescent-activated cell sorter after labeling of K. lactis cells with fluorescein isothiocyanate (FITC) conjugated to Griffonia simplicifolia II lectin, which binds terminal N-acetylglucosamine [6].
  • This inhibitory activity can be absorbed with the murine IgD-binding lectin from Griffonia simplicifolia 1 (GS-1) immobilized on Sepharose [7].
  • Stimulated macrophages express a new glycoprotein receptor reactive with Griffonia simplicifolia I-B4 isolectin [8].
  • Non-trkA cells that expressed BDNF included some trkC cells and some small cells that labeled with the lectin Griffonia simplicifolia IB4, a marker for cells that do not express trks [9].
  • Isolectins I-A and I-B of Griffonia (Bandeiraea) simplicifolia. Crystal structure of metal-free GS I-B(4) and molecular basis for metal binding and monosaccharide specificity [10].
 

Biological context of Griffonia

  • These PD cells expressed keratin 14 and Griffonia simplicifolia I-isolectin B4 (GSI-B4) lectin binding sites, which are specific for basal cells in normal epithelium but did not react with secretory or ciliated cell markers [11].
  • The authors confirmed the endothelial phenotype of sorted cells based upon endothelial-specific Griffonia simplicifolia lectin staining, uptake of acetylated low-density lipoprotein (LDL), and von Willebrand factor (vWF) and VE-cadherin staining [12].
 

Anatomical context of Griffonia

 

Associations of Griffonia with chemical compounds

  • Activated macrophages and affinity adsorbents prepared by the covalent coupling of galactopyranoside to agarose also bind the plant lectin isolectin B4 prepared from the seeds of Griffonia simplicifolia [18].
  • Griffonia simplicifolia agglutinin II served in the present study to further characterise the sequence of abnormal glycogen accumulation in streptozotocin-diabetic rat kidneys [19].
  • These cells express angiotensin-converting enzyme, acetylated LDL receptor, constitutive endothelial nitric oxide synthase, and vascular cell adhesion molecule-1 and bind Griffonia simplicifolia-I lectin [20].
  • Muscle samples were incubated with rhodamine-labeled Griffonia simplicifolia I lectin, which identifies both perfused and nonperfused microvessels [21].
  • The surface of cells in the cutaneous epidermis of the newborn rat exhibits a discrete change in lectin-binding specificity from Griffonia simplicifolia I-B4 (GS I-B4), specific for alpha-D-galactosyl residues, to Ulex europeus agglutinin I (UEA), specific for alpha-L-fucose, as the cell leaves the basal layer and differentiates [22].
 

Gene context of Griffonia

  • The Had-1 mutant was resistant to wheat germ agglutinin, but sensitive to a Griffonia simplicifolia lectin, GS-II, which recognizes terminal N-acetylglucosamine residues [23].
  • MCEC-1 cells were characterized by their ability to form tubes, Griffonia simplicifolia isolectin B4 binding, and CD31, intercellular adhesion molecule (ICAM)-2, and endoglin expression [24].
  • First, vessel density was increased in the infarct of MMP-9 null mice compared with WT, as quantified by Griffonia (Bandeiraea) simplicifolia lectin I (GSL-I) immunohistochemistry [25].
  • Staining with Griffonia simplicifolia isolectin B4 antibody showed no specific vascular changes in any of the rats, while VEGF staining revealed higher immunoreactivity in the retina of rats with normal retinal structure and those with proliferative retinopathy, but only low immunoreactivity in the control animals [26].
  • Macrophage membrane glycoprotein binding of Griffonia simplicifolia I-B4 induces TNF-alpha production and a tumoricidal response [27].
 

Analytical, diagnostic and therapeutic context of Griffonia

  • This pig linear-B antigen reacts strongly with the anti-alpha Gal isolectin B4 from Griffonia simplicifolia 1 and with human natural anti-alpha Gal antibodies specifically purified by affinity chromatography on synthetic oligosaccharides containing the terminal nonreducing alpha Gal1-->3 beta Gal-R disaccharide [28].
  • This was confirmed by double labeling of either Griffonia simplicifolia isolectin B4, a microglial-specific marker, or glial fibrillary acidic protein, an astrocyte-specific protein with PBR fluorescence immunohistochemistry [29].
  • The integrin adhesion molecules LFA-1 (alpha and beta chains) and VLA-4 were expressed on most microglial cells with activated morphology, as verified by co-localization with double immunofluorescence labeling for LFA-1 or VLA-4 and Griffonia simplicifolia isolectin B4 (GFS-B4) [30].
  • Mutagenic reverse transcription-polymerase chain reaction, Western immunoblot assay using a CB1 receptor amine terminal domain-specific antibody, and cellular colocalization of CB1 and the microglial marker Griffonia simplicifolia isolectin B4 confirmed the expression of the CB1 receptor in rat microglial cells [31].
  • METHODS: Glycolipid fractions were separated on thin layer chromatography plates and immunostained with human AB sera, biotinylated Griffonia simplicifolia isolectin B4, monoclonal antibodies reacting with the HD antigen and with blood group A antigens based on different core saccharide structures [32].

References

  1. Occurrence of alpha-D-galactosyl-containing glycoproteins on Ehrlich tumor cell membranes. Eckhardt, A.E., Goldstein, I.J. Biochemistry (1983) [Pubmed]
  2. BQ788, an endothelin ET(B) receptor antagonist, attenuates stab wound injury-induced reactive astrocytes in rat brain. Koyama, Y., Takemura, M., Fujiki, K., Ishikawa, N., Shigenaga, Y., Baba, A. Glia (1999) [Pubmed]
  3. Differentiation of Bacillus anthracis and other Bacillus species by lectins. Cole, H.B., Ezzell, J.W., Keller, K.F., Doyle, R.J. J. Clin. Microbiol. (1984) [Pubmed]
  4. Metastasis-associated S100A4 (Mts1) protein is expressed in subpopulations of sensory and autonomic neurons and in Schwann cells of the adult rat. Sandelin, M., Zabihi, S., Liu, L., Wicher, G., Kozlova, E.N. J. Comp. Neurol. (2004) [Pubmed]
  5. Expression of muscle capillary alkaline phosphatase is affected by hypoxia. Hansen-Smith, F.M., Blackwell, L.H., Joswiak, G.R. J. Appl. Physiol. (1992) [Pubmed]
  6. Mammalian Golgi apparatus UDP-N-acetylglucosamine transporter: molecular cloning by phenotypic correction of a yeast mutant. Guillen, E., Abeijon, C., Hirschberg, C.B. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  7. Specificity of the murine IgD receptor on T cells is for N-linked glycans on IgD molecules. Amin, A.R., Tamma, S.M., Oppenheim, J.D., Finkelman, F.D., Kieda, C., Coico, R.F., Thorbecke, G.J. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  8. Stimulated macrophages express a new glycoprotein receptor reactive with Griffonia simplicifolia I-B4 isolectin. Maddox, D.E., Shibata, S., Goldstein, I.J. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  9. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. Michael, G.J., Averill, S., Nitkunan, A., Rattray, M., Bennett, D.L., Yan, Q., Priestley, J.V. J. Neurosci. (1997) [Pubmed]
  10. Isolectins I-A and I-B of Griffonia (Bandeiraea) simplicifolia. Crystal structure of metal-free GS I-B(4) and molecular basis for metal binding and monosaccharide specificity. Lescar, J., Loris, R., Mitchell, E., Gautier, C., Chazalet, V., Cox, V., Wyns, L., Pérez, S., Breton, C., Imberty, A. J. Biol. Chem. (2002) [Pubmed]
  11. Expression of phenotypic markers during regeneration of rat tracheal epithelium following mechanical injury. Shimizu, T., Nishihara, M., Kawaguchi, S., Sakakura, Y. Am. J. Respir. Cell Mol. Biol. (1994) [Pubmed]
  12. Optimization of isolation and functional characterization of primary murine aortic endothelial cells. Magid, R., Martinson, D., Hwang, J., Jo, H., Galis, Z.S. Endothelium (2003) [Pubmed]
  13. CNS microvascular pericytes exhibit multipotential stem cell activity. Dore-Duffy, P., Katychev, A., Wang, X., Van Buren, E. J. Cereb. Blood Flow Metab. (2006) [Pubmed]
  14. Enzymatic removal of alpha-galactosyl epitopes from porcine endothelial cells diminishes the cytotoxic effect of natural antibodies. LaVecchio, J.A., Dunne, A.D., Edge, A.S. Transplantation (1995) [Pubmed]
  15. Cellular heterogeneity in the membrana granulosa of developing rat follicles: assessment by flow cytometry and lectin binding. Kerketze, K., Blaschuk, O.W., Farookhi, R. Endocrinology (1996) [Pubmed]
  16. Oligodendrocytes produce low molecular weight glycoproteins containing N-acetyl-D-glucosamine in their Golgi apparatus. Supler, M.L., Semple-Rowland, S.L., Streit, W.J. Glia (1994) [Pubmed]
  17. Expression of "cell-type-specific" markers during rat tracheal epithelial regeneration. Shimizu, T., Nettesheim, P., Ramaekers, F.C., Randell, S.H. Am. J. Respir. Cell Mol. Biol. (1992) [Pubmed]
  18. Activated macrophages and antibodies against the plant lectin, GSI-B4, recognize the same tumor-associated structure (TAS). Takacs, B., Staehli, C. J. Immunol. (1987) [Pubmed]
  19. Lectin detection of renal glycogen in rats with short-term streptozotocin-diabetes. Hennigar, R.A., Mayfield, R.K., Harvey, J.N., Ge, Z.H., Sens, D.A. Diabetologia (1987) [Pubmed]
  20. Basic fibroblast growth factor-induced angiogenic phenotype in mouse endothelium. A study of aortic and microvascular endothelial cell lines. Bastaki, M., Nelli, E.E., Dell'Era, P., Rusnati, M., Molinari-Tosatti, M.P., Parolini, S., Auerbach, R., Ruco, L.P., Possati, L., Presta, M. Arterioscler. Thromb. Vasc. Biol. (1997) [Pubmed]
  21. Microvessel changes in hypertension measured by Griffonia simplicifolia I lectin. Greene, A.S., Lombard, J.H., Cowley, A.W., Hansen-Smith, F.M. Hypertension (1990) [Pubmed]
  22. Lectin binding as a probe of proliferative and differentiative phases in primary monolayer cultures of cutaneous keratinocytes. Ku, W.W., Bernstein, I.A. Exp. Cell Res. (1988) [Pubmed]
  23. Isolation and characterization of mouse FM3A cell mutants which are devoid of Newcastle disease virus receptors. Hara, T., Hattori, S., Kawakita, M. J. Virol. (1989) [Pubmed]
  24. Conditional immortalization of growth factor-responsive cardiac endothelial cells from H-2K(b)-tsA58 mice. Lidington, E.A., Rao, R.M., Marelli-Berg, F.M., Jat, P.S., Haskard, D.O., Mason, J.C. Am. J. Physiol., Cell Physiol. (2002) [Pubmed]
  25. Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Lindsey, M.L., Escobar, G.P., Dobrucki, L.W., Goshorn, D.K., Bouges, S., Mingoia, J.T., McClister, D.M., Su, H., Gannon, J., MacGillivray, C., Lee, R.T., Sinusas, A.J., Spinale, F.G. Am. J. Physiol. Heart Circ. Physiol. (2006) [Pubmed]
  26. Retinal neovascularisation without ischaemia in the spontaneously diabetic Torii rat. Yamada, H., Yamada, E., Higuchi, A., Matsumura, M. Diabetologia (2005) [Pubmed]
  27. Macrophage membrane glycoprotein binding of Griffonia simplicifolia I-B4 induces TNF-alpha production and a tumoricidal response. Tabor, D.R., Theus, S.A., Barnett, J.B., Jacobs, R.F. J. Cell. Physiol. (1992) [Pubmed]
  28. Carbohydrate antigens of pig tissues reacting with human natural antibodies as potential targets for hyperacute vascular rejection in pig-to-man organ xenotransplantation. Oriol, R., Ye, Y., Koren, E., Cooper, D.K. Transplantation (1993) [Pubmed]
  29. Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity. Kuhlmann, A.C., Guilarte, T.R. J. Neurochem. (2000) [Pubmed]
  30. Resting microglial cells in vitro: analysis of morphology and adhesion molecule expression in organotypic hippocampal slice cultures. Hailer, N.P., Jarhult, J.D., Nitsch, R. Glia (1996) [Pubmed]
  31. The central cannabinoid receptor (CB1) mediates inhibition of nitric oxide production by rat microglial cells. Waksman, Y., Olson, J.M., Carlisle, S.J., Cabral, G.A. J. Pharmacol. Exp. Ther. (1999) [Pubmed]
  32. Expression of carbohydrate xenoantigens on porcine peripheral nerve. Magnusson, S., Strokan, V., Svensson, L., Månsson, J.E., Rydberg, L., Breimer, M.E. Xenotransplantation (2005) [Pubmed]
 
WikiGenes - Universities