The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A role of p73 in mitotic exit.

The p53-related p73 proteins regulate developmental processes, cell growth, and DNA damage response. p73 function is regulated by post-translational modifications and protein-protein interactions. At the G2/M transition, p73 is phosphorylated at Thr-86 by the p34cdc2/cyclin B complex; this is associated with its exclusion from condensed chromosomes and loss of DNA binding and transcriptional activation ability. Here we showed that p73 hypo-phosphorylated species reappear during mitotic exit, concomitant with p73 relocalization to telophase nuclei and recovered ability to activate transcription. Functional knock-out of p73 gene expression by small interfering RNAs (siRNAs) alters mitotic progression, yielding an increase of ana-telophase cells, the accumulation of aberrant late mitotic figures, and the appearance of abnormalities in the subsequent interphase. This p73 activity at the M-to-G1 transition is mediated by its transactivating function because expression of the transcription dominant negative mutant p73DD induces the same mitotic exit phenotype. We also found that the cyclin-dependent kinase inhibitor Kip2/p57 gene is a specific target of p73 regulation during mitotic exit and re-entry into G1. Both knock-out of p73 gene expression by siRNAs and abrogation of p73-dependent transcription by the p73DD mutant abrogate Kip2/p57 increase at the M-to-G1 transition. Moreover, similar abnormalities (e.g. delay in late mitotic stages with the accumulation of aberrant ana-telophase figures, and abnormalities in the following interphase) are observed in cultures in which the expression of Kip2/p57 is abrogated by siRNAs. These results identify a novel p73- Kip2/p57 pathway that coordinates mitotic exit and transition to G1.[1]

References

  1. A role of p73 in mitotic exit. Merlo, P., Fulco, M., Costanzo, A., Mangiacasale, R., Strano, S., Blandino, G., Taya, Y., Lavia, P., Levrero, M. J. Biol. Chem. (2005) [Pubmed]
 
WikiGenes - Universities