The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Role of atrial natriuretic peptide in the suppression of lysophosphatydic acid-induced rat aortic smooth muscle (RASM) cell growth.

Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological functions. In the present study we investigated the possible role of atrial natriuretic peptide (ANP), a hormone affecting cardiovascular homeostasis and inducing antimitogenic effects in different cell types, on LPA-induced cell growth and reactive oxygen species (ROS) production in rat aortic smooth muscle (RASM) cells. Both LPA effects on cell growth and levels of ROS were totally abrogated by physiological concentrations of ANP, without modifying the overexpression of LPA-receptors. These effects were also affected by cell pretreatment with wortmannin, an inhibitor of phosphatidylinositol 3-kinase ( PI3K). Moreover, the LPA-induced activation of Akt, a downstream target of PI3K, was completely inhibited by physiological concentrations of ANP, which were also able to inhibit p42/ p44 phosphorylation. Taken together, our data suggest that PI3K may represent an important step in the LPA signal transduction pathway responsible for ROS generation and DNA synthesis in RASM cells. At same time, the enzyme could also represent an essential target for the antiproliferative effects of ANP.[1]

References

  1. Role of atrial natriuretic peptide in the suppression of lysophosphatydic acid-induced rat aortic smooth muscle (RASM) cell growth. Baldini, P.M., De Vito, P., D'aquilio, F., Vismara, D., Zalfa, F., Bagni, C., Fiaccavento, R., Di Nardo, P. Mol. Cell. Biochem. (2005) [Pubmed]
 
WikiGenes - Universities