The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ubiquitin manipulation by an E2 conjugating enzyme using a novel covalent intermediate.

Degradation of misfolded and damaged proteins by the 26 S proteasome requires the substrate to be tagged with a polyubiquitin chain. Assembly of polyubiquitin chains and subsequent substrate labeling potentially involves three enzymes, an E1, E2, and E3. E2 proteins are key enzymes and form a thioester intermediate through their catalytic cysteine with the C-terminal glycine (Gly76) of ubiquitin. This thioester intermediate is easily hydrolyzed in vitro and has eluded structural characterization. To overcome this, we have engineered a novel ubiquitin- E2 disulfide- linked complex by mutating Gly76 to Cys76 in ubiquitin. Reaction of Ubc1, an E2 from Saccharomyces cerevisiae, with this mutant ubiquitin resulted in an ubiquitin- E2 disulfide that could be purified and was stable for several weeks. Chemical shift perturbation analysis of the disulfide ubiquitin-Ubc1 complex by NMR spectroscopy reveals an ubiquitin-Ubc1 interface similar to that for the ubiquitin- E2 thioester. In addition to the typical E2 catalytic domain, Ubc1 contains an ubiquitin-associated (UBA) domain, and we have utilized NMR spectroscopy to demonstrate that in this disulfide complex the UBA domain is freely accessible to non-covalently bind a second molecule of ubiquitin. The ability of the Ubc1 to bind two ubiquitin molecules suggests that the UBA domain does not interact with the thioester-bound ubiquitin during polyubiquitin chain formation. Thus, construction of this novel ubiquitin- E2 disulfide provides a method to characterize structurally the first step in polyubiquitin chain assembly by Ubc1 and its related class II enzymes.[1]

References

  1. Ubiquitin manipulation by an E2 conjugating enzyme using a novel covalent intermediate. Merkley, N., Barber, K.R., Shaw, G.S. J. Biol. Chem. (2005) [Pubmed]
 
WikiGenes - Universities