The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Regio- and enantioselectivity of soybean fatty acid epoxide hydrolase.

Soluble epoxide hydrolase purified from soybean catalyzes trans-addition of water across the oxirane ring of cis-9,10-epoxystearic acid with inversion of configuration at the attacked carbon, yielding threo-9,10-dihydroxystearic acid. Kinetic analyses of the progress curves, obtained at low substrate concentrations (i.e. [S] much less than Km), and determination of the enantiomeric excess of the residual substrate by chiral-phase high-performance liquid chromatography at different reaction times, indicate that the epoxide hydrolase hydrates preferentially cis-9R, 10S-epoxystearic acid (V/Km ratio, approximately 20). Interestingly, this enantiomer is obtained by epoxidation of oleic acid catalyzed by peroxygenase, a hydroperoxide-dependent oxidase, we have previously described in soybean (Blée, E., and Schuber, F. (1990) J.Biol. Chem. 265, 12887-12894). For the epoxide hydrolase to show high enantioselectivity there must be a free carboxylic acid functionality on the substrate which probably influences its positioning within the active site. This selectivity, which in principle can be used for kinetic resolution of the cis-9,10-epoxystearic acid enantiomers, is much reduced with methyl cis-9,10-epoxystearate. 18O-Labeling experiments indicate that water attacks both cis-9,10-epoxystearic acid enantiomers on the oxirane carbon which has the S-chirality. Results show that soybean epoxide hydrolase produces exclusively threo-9R,10R-dihydroxystearic acid, i.e. a naturally occurring metabolite in higher plants. cis-9,10-Epoxy-18-hydroxystearic acid, a cutin monomer, was a poorer substrate of the epoxide hydrolase than 9,10-epoxystearic acid (V/Km ratio for the preferred enantiomers, approximately 19). From a physiological point of view, peroxygenase and this newly described epoxide hydrolase could be responsible, in vivo, for the biosynthesis of a class of oxygenated fatty acid compounds known to be involved in cutin monomers production and in plant defense mechanisms.[1]

References

  1. Regio- and enantioselectivity of soybean fatty acid epoxide hydrolase. Blée, E., Schuber, F. J. Biol. Chem. (1992) [Pubmed]
 
WikiGenes - Universities