The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

beta-Arrestin 2 expression determines the transcriptional response to lysophosphatidic acid stimulation in murine embryo fibroblasts.

G protein-coupled receptors often employ novel signaling mechanisms, such as transactivation of epidermal growth factor ( EGF) receptors or G protein-independent signals transmitted by beta-arrestins, to control the activity of extracellular signal-regulated kinases 1 and 2 ( ERK1/2). In this study we investigated the role of beta-arrestins in lysophosphatidic acid (LPA) receptor-stimulated ERK1/2 activation using fibroblast lines derived from wild type, beta-arrestin 1, beta-arrestin 2, and beta-arrestin 1/2 knock-out mice. LPA stimulation produced robust ERK1/2 phosphorylation in all four backgrounds. In cells lacking beta-arrestin 2, >80% of LPA-stimulated ERK1/2 phosphorylation was mediated by transactivated EGF receptors. In contrast, ERK1/2 activation in cells expressing beta-arrestin 2 was predominantly EGF receptor-independent. Introducing FLAG epitope-tagged beta-arrestin 2 into the beta-arrestin 1/2 null background restored EGF receptor-independent ERK1/2 activation, indicating that beta-arrestin 2 expression confers ERK1/2 activation via a distinct mechanism. To determine the contributions of beta-arrestin 2, transactivated EGF receptors, and ERK1/2 to LPA-stimulated transcriptional responses, we employed gene expression arrays containing cDNA markers for G protein-coupled receptor-mediated signaling. In the beta-arrestin 1/2 null background, 1 h of exposure to LPA significantly increased transcription of seven marker genes. Six of these responses were EGF receptor-dependent, and two required ERK1/2 activation. In beta-arrestin 2 expressing cells, three of the seven LPA-stimulated transcriptional responses observed in the beta-arrestin 1/2 null background were lost. The four residual responses were independent of EGF receptor transactivation, but all were ERK1/2-dependent. These data indicate that beta-arrestin 2 functions both to attenuate EGF receptor transactivation-dependent signaling and to promote a distinct subset of ERK1/2- mediated responses to LPA receptor activation.[1]

References

 
WikiGenes - Universities