The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Targeted complement inhibition by C3d recognition ameliorates tissue injury without apparent increase in susceptibility to infection.

Previous studies indicate a pivotal role for complement in mediating both local and remote injury following ischemia and reperfusion of the intestine. Here, we report on the use of a mouse model of intestinal ischemia/reperfusion injury to investigate the strategy of targeting complement inhibition to sites of complement activation by linking an iC3b/C3dg-binding fragment of mouse complement receptor 2 (CR2) to a mouse complement-inhibitory protein, Crry. We show that the novel CR2-Crry fusion protein targets sites of local and remote (lung) complement activation following intestinal ischemia and reperfusion injury and that CR2-Crry requires a 10-fold lower dose than its systemic counterpart, Crry-Ig, to provide equivalent protection from both local and remote injury. CR2-Crry has a significantly shorter serum half-life than Crry-Ig and, unlike Crry-Ig, had no significant effect on serum complement activity at minimum effective therapeutic doses. Furthermore, the minimum effective dose of Crry-Ig significantly enhanced susceptibility to infection in a mouse model of acute septic peritonitis, whereas the effect of CR2-Crry on susceptibility to infection was indistinguishable from that of PBS control. Thus, compared with systemic inhibition, CR2-mediated targeting of a complement inhibitor of activation improved bioavailability, significantly enhanced efficacy, and maintained host resistance to infection.[1]

References

  1. Targeted complement inhibition by C3d recognition ameliorates tissue injury without apparent increase in susceptibility to infection. Atkinson, C., Song, H., Lu, B., Qiao, F., Burns, T.A., Holers, V.M., Tsokos, G.C., Tomlinson, S. J. Clin. Invest. (2005) [Pubmed]
 
WikiGenes - Universities