Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack.
Cymbidium Mosaic Virus (CymMV) and Erwinia carotovora have been reported to cause severe damage to orchid plants. To enhance the resistance of orchids to both viral and bacterial phytopathogens, gene stacking was applied on Phalaenopsis orchid by double transformation. PLBs originally transformed with CymMV coat protein cDNA ( CP) were then re-transformed with sweet pepper ferredoxin-like protein cDNA (Pflp) by Agrobacterium tumefaciens, to enable expression of dual (viral and bacterial) disease resistant traits. A non-antibiotic selection procedure in the second transformation minimized the potential rate of 'stacking' antibiotic genes in the orchid gene pool. Transgene integration in transgenic Phalaenopsis lines was confirmed by Southern blot analysis for both CP and pflp genes. Expression of transgenes was detected by northern blot analysis, and disease resistant assays revealed that transgenic lines exhibited enhanced resistance to CymMV and E. carotovora. This is the first report describing a transgenic Phalaenopsis orchid with dual resistance to phytopathogens.[1]References
- Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack. Chan, Y.L., Lin, K.H., Sanjaya, n.u.l.l., Liao, L.J., Chen, W.H., Chan, M.T. Transgenic Res. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg