The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Novel glycosidic linkage in Aedes aegypti chorion peroxidase: N-mannosyl tryptophan.

Aedes aegypti chorion peroxidase ( CPO) plays a crucial role in chorion hardening by catalyzing chorion protein cross-linking through dityrosine formation. The enzyme is extremely resistant to denaturing conditions, which seem intimately related to its post-translational modifications, including disulfide bond formation and glycosylation. In this report, we have provided data that describe a new type of glycosylation in CPO, where a mannose is linked to the N-1 atom of the indole ring of Trp residue. Through liquid chromatography/electrospray ionization/tandem mass spectrometry and de novo sequencing of CPO tryptic peptides, we determined that three of the seven available Trp residues in mature CPO are partially (40-50%) or completely mannosylated. This conclusion is based on the following properties of the electrospray ionization/tandem mass spectrometry spectra and the enzymatic reaction of these peptides: 1) the presence of a 162-Da substituent in each Trp residue; 2) the presence of abundant fragments of m/z 163 ([Hex + H]) and [M + H - 162] (typical for N-glycosides); 3) the absence of a loss of 120 Da (this loss is typical for aromatic C-glycosides); and 4) the cleavage of the glycosidic linkage by PNGase A or F (typical for N-glycans). These results establish that a C-N bond is formed between the anomeric carbon of a mannose residue and the N-1 atom of the indole ring of Trp. This is the first report that provides definitive evidence for N-mannosylation of Trp residues in a protein. In addition, our data demonstrate that PNGase can hydrolyze Trp N-linked mannose in peptides, which is unusual because no typical beta-amide bond is present in the Trp-mannosyl moiety. Results of this study should stimulate research toward a comprehensive understanding of physiology and biochemistry of Trp N-mannosylation in proteins and the overall biochemical mechanisms of PNGase-catalyzed reactions.[1]

References

  1. Novel glycosidic linkage in Aedes aegypti chorion peroxidase: N-mannosyl tryptophan. Li, J.S., Cui, L., Rock, D.L., Li, J. J. Biol. Chem. (2005) [Pubmed]
 
WikiGenes - Universities