The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Aedes

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Aedes

 

High impact information on Aedes

  • AHR38, a homolog of NGFI-B, inhibits formation of the functional ecdysteroid receptor in the mosquito Aedes aegypti [6].
  • The overexpression of both isoforms, AaREL1-A and AaREL1-B, in Vg-DeltaREL1-A transgenic mosquitoes resulted in the concomitant activation of Aedes Spätzle1A and Serpin-27A, independent of septic injury [7].
  • Transgenic alteration of Toll immune pathway in the female mosquito Aedes aegypti [7].
  • We cloned and molecularly characterized the gene homologous to Drosophila Relish from the mosquito Aedes aegypti [8].
  • In vitro-translated protein from the Rel-only construct specifically binds to the kappa B motif from Drosophila cecropin A1 and Aedes defensin genes [8].
 

Chemical compound and disease context of Aedes

 

Biological context of Aedes

  • We report a phenomenon previously unknown for oviparous animals; in Aedes aegypti mosquitoes a serine carboxypeptidase is synthesized extraovarially and then internalized by oocytes [14].
  • In contrast, this steroid functioned as a potent ligand for the mosquito Aedes aegypti receptor complex (AaEcR-USP), significantly enhancing DNA binding and transactivating a reporter gene in S2 cells [15].
  • The deduced amino acid sequence shows a 31% amino acid homology to Aedes aegypti chitinase and a multidomain structure containing one chitin binding peritrophin A domain and two glycosyl hydrolase family 18 chitin binding domains [16].
  • GATA Factor Translation Is the Final Downstream Step in the Amino Acid/Target-of-Rapamycin-mediated Vitellogenin Gene Expression in the Anautogenous Mosquito Aedes aegypti [17].
  • Factors affecting polybrene-mediated transfection of cultured Aedes albopictus (mosquito) cells [18].
 

Anatomical context of Aedes

 

Associations of Aedes with chemical compounds

  • We have examined the synthesis and processing of asparagine-linked oligosaccharides from Aedes albopictus C6/36 mosquito cells [24].
  • 3-Hydroxykynurenine transaminase identity with alanine glyoxylate transaminase. A probable detoxification protein in Aedes aegypti [25].
  • Regulation of asparagine-linked oligosaccharide processing. Oligosaccharide processing in Aedes albopictus mosquito cells [24].
  • The enzyme was purified from Aedes aegypti larvae by ammonium sulfate fractionation, heat treatment, and various chromatographic techniques, plus non-denaturing electrophoresis [25].
  • We found that two well-characterized mammalian Golgi proteins were targeted to the Golgi region of Aedes albopictus cells, both in the presence and absence of cellular cholesterol [26].
 

Gene context of Aedes

  • Using domain-swapping techniques, we made a series of Aedes and Drosophila EcR chimeric constructs [15].
  • In this paper, we analyzed the upstream region of the Aedes aegypti Vg gene in order to identify regulatory elements responsible for its unique expression pattern [27].
  • In this study, we have shown that the br gene is involved in the 20E-regulatory hierarchy controlling vitellogenesis in the mosquito, Aedes aegypti [28].
  • Other known subfamily members from a range of invertebrate and vertebrate species include: insect-derived growth factor, Drosophila ADGFs, tsetse salivary growth factors, insect adenosine deaminases (ADAs; Lutzomyia, Culex, Aedes, Anopheles), and cat eye syndrome critical region gene 1 (CECR1) in humans, pigs, and zebrafish [29].
  • The deduced amino acid sequence of the D. melanogaster ferritin subunit contained a signal sequence and resembled most closely ferritin of the mosquito Aedes aegypti [30].
 

Analytical, diagnostic and therapeutic context of Aedes

References

  1. Molecular basis of bunyavirus transmission by mosquitoes: role of the middle-sized RNA segment. Beaty, B.J., Holterman, M., Tabachnick, W., Shope, R.E., Rozhon, E.J., Bishop, D.H. Science (1981) [Pubmed]
  2. Sialokinin I and II: vasodilatory tachykinins from the yellow fever mosquito Aedes aegypti. Champagne, D.E., Ribeiro, J.M. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  3. Effect of actinomycin D and cycloheximide on replication of Sindbis virus in Aedes albopictus (mosquito) cells. Condreay, L.D., Adams, R.H., Edwards, J., Brown, D.T. J. Virol. (1988) [Pubmed]
  4. Analysis of La Crosse virus S-segment RNA and its positive-sense transcripts in persistently infected mosquito tissues. Chandler, L.J., Wasieloski, L.P., Blair, C.D., Beaty, B.J. J. Virol. (1996) [Pubmed]
  5. Processing of the dengue virus type 2 proteins prM and C-prM. Murray, J.M., Aaskov, J.G., Wright, P.J. J. Gen. Virol. (1993) [Pubmed]
  6. AHR38, a homolog of NGFI-B, inhibits formation of the functional ecdysteroid receptor in the mosquito Aedes aegypti. Zhu, J., Miura, K., Chen, L., Raikhel, A.S. EMBO J. (2000) [Pubmed]
  7. Transgenic alteration of Toll immune pathway in the female mosquito Aedes aegypti. Bian, G., Shin, S.W., Cheon, H.M., Kokoza, V., Raikhel, A.S. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  8. Characterization of three alternatively spliced isoforms of the Rel/NF-kappa B transcription factor Relish from the mosquito Aedes aegypti. Shin, S.W., Kokoza, V., Ahmed, A., Raikhel, A.S. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  9. Glutathione S-transferase activities in the yellow-fever mosquito [Aedes aegypti (Louisville)] during growth and aging. Hazelton, G.A., Lang, C.A. Biochem. J. (1983) [Pubmed]
  10. Persistent infection of Aedes albopictus C6/36 cells by Bunyamwera virus. Elliott, R.M., Wilkie, M.L. Virology (1986) [Pubmed]
  11. Sindbis virus mutants able to replicate in methionine-deprived Aedes albopictus cells. Durbin, R.K., Stollar, V. Virology (1985) [Pubmed]
  12. Inhibition of Sindbis virus replication in Aedes albopictus cells by virazole (ribavirin) and its reversal by actinomycin: a correction. Malinoski, F., Stollar, V. Virology (1980) [Pubmed]
  13. A single amino acid change in the E2 glycoprotein of Venezuelan equine encephalitis virus affects replication and dissemination in Aedes aegypti mosquitoes. Woodward, T.M., Miller, B.R., Beaty, B.J., Trent, D.W., Roehrig, J.T. J. Gen. Virol. (1991) [Pubmed]
  14. An extraovarian protein accumulated in mosquito oocytes is a carboxypeptidase activated in embryos. Cho, W.L., Deitsch, K.W., Raikhel, A.S. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  15. Molecular determinants of differential ligand sensitivities of insect ecdysteroid receptors. Wang, S.F., Ayer, S., Segraves, W.A., Williams, D.R., Raikhel, A.S. Mol. Cell. Biol. (2000) [Pubmed]
  16. Identification and molecular characterization of a chitinase from the hard tick Haemaphysalis longicornis. You, M., Xuan, X., Tsuji, N., Kamio, T., Taylor, D., Suzuki, N., Fujisaki, K. J. Biol. Chem. (2003) [Pubmed]
  17. GATA Factor Translation Is the Final Downstream Step in the Amino Acid/Target-of-Rapamycin-mediated Vitellogenin Gene Expression in the Anautogenous Mosquito Aedes aegypti. Park, J.H., Attardo, G.M., Hansen, I.A., Raikhel, A.S. J. Biol. Chem. (2006) [Pubmed]
  18. Factors affecting polybrene-mediated transfection of cultured Aedes albopictus (mosquito) cells. Fallon, A.M. Exp. Cell Res. (1986) [Pubmed]
  19. Antimicrobial activity spectrum, cDNA cloning, and mRNA expression of a newly isolated member of the cecropin family from the mosquito vector Aedes aegypti. Lowenberger, C., Charlet, M., Vizioli, J., Kamal, S., Richman, A., Christensen, B.M., Bulet, P. J. Biol. Chem. (1999) [Pubmed]
  20. Novel glycosidic linkage in Aedes aegypti chorion peroxidase: N-mannosyl tryptophan. Li, J.S., Cui, L., Rock, D.L., Li, J. J. Biol. Chem. (2005) [Pubmed]
  21. Three isoforms of a hepatocyte nuclear factor-4 transcription factor with tissue- and stage-specific expression in the adult mosquito. Kapitskaya, M.Z., Dittmer, N.T., Deitsch, K.W., Cho, W.L., Taylor, D.G., Leff, T., Raikhel, A.S. J. Biol. Chem. (1998) [Pubmed]
  22. Passive transfer of cutaneous mosquito-bite hypersensitivity by IgE anti-saliva antibodies. Reunala, T., Brummer-Korvenkontio, H., Räsänen, L., François, G., Palosuo, T. J. Allergy Clin. Immunol. (1994) [Pubmed]
  23. Electrical coupling between cells of the insect Aedes albopictus. Bukauskas, F., Kempf, C., Weingart, R. J. Physiol. (Lond.) (1992) [Pubmed]
  24. Regulation of asparagine-linked oligosaccharide processing. Oligosaccharide processing in Aedes albopictus mosquito cells. Hsieh, P., Robbins, P.W. J. Biol. Chem. (1984) [Pubmed]
  25. 3-Hydroxykynurenine transaminase identity with alanine glyoxylate transaminase. A probable detoxification protein in Aedes aegypti. Han, Q., Fang, J., Li, J. J. Biol. Chem. (2002) [Pubmed]
  26. Cholesterol-independent targeting of Golgi membrane proteins in insect cells. Rolls, M.M., Marquardt, M.T., Kielian, M., Machamer, C.E. Mol. Biol. Cell (1997) [Pubmed]
  27. Transcriptional regulation of the mosquito vitellogenin gene via a blood meal-triggered cascade. Kokoza, V.A., Martin, D., Mienaltowski, M.J., Ahmed, A., Morton, C.M., Raikhel, A.S. Gene (2001) [Pubmed]
  28. The early gene Broad is involved in the ecdysteroid hierarchy governing vitellogenesis of the mosquito Aedes aegypti. Chen, L., Zhu, J., Sun, G., Raikhel, A.S. J. Mol. Endocrinol. (2004) [Pubmed]
  29. Mollusk-derived growth factor and the new subfamily of adenosine deaminase-related growth factors. Akalal, D.B., Schein, C.H., Nagle, G.T. Curr. Pharm. Des. (2004) [Pubmed]
  30. Isolation and properties of Drosophila melanogaster ferritin--molecular cloning of a cDNA that encodes one subunit, and localization of the gene on the third chromosome. Charlesworth, A., Georgieva, T., Gospodov, I., Law, J.H., Dunkov, B.C., Ralcheva, N., Barillas-Mury, C., Ralchev, K., Kafatos, F.C. Eur. J. Biochem. (1997) [Pubmed]
  31. The glycoprotein toxin of Bacillus thuringiensis subsp. israelensis indicates a lectinlike receptor in the larval mosquito gut. Muthukumar, G., Nickerson, K.W. Appl. Environ. Microbiol. (1987) [Pubmed]
  32. The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Johnson, A.J., Guirakhoo, F., Roehrig, J.T. Virology (1994) [Pubmed]
  33. Electron microscopic observation of a newly isolated flavivirus-like virus from field-caught mosquitoes. Okuno, Y., Igarashi, A., Fukunaga, T., Tadano, M., Fukai, K. J. Gen. Virol. (1984) [Pubmed]
  34. Mutations that confer resistance to mycophenolic acid and ribavirin on Sindbis virus map to the nonstructural protein nsP1. Scheidel, L.M., Stollar, V. Virology (1991) [Pubmed]
 
WikiGenes - Universities