The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Chorion


High impact information on Chorion

  • This phenomenon may reflect the separation of the chorion from the decidual layer of the uterus, with the release of intact or degraded chorionic components of the extracellular matrix into the cervical and vaginal secretions [6].
  • To determine if the sequences bound by the particles play a role in RNA processing, we have correlated the nascent transcript morphology of Drosophila chorion s36-1 and s38-1 genes with their nucleotide sequences [7].
  • Clones corresponding to two distinct A1 and A2 chorion genes have been isolated from a cDNA library in Drosophila melanogaster and characterized by hybrid-selected translation and blotting-hybridization analysis [8].
  • Drosophila bearing the ocelliless mutation underproduce two major chorion proteins both of which map near this gene [9].
  • Mash-2 transcripts are found in the female germ line and in the embryo throughout preimplantation development, but are highly expressed later only in the ectoplacental cone, the chorion and their derivatives in the placenta [10].

Biological context of Chorion


Anatomical context of Chorion


Associations of Chorion with chemical compounds

  • Bromodeoxyuridine, origin recognition complex, and the elongation factors minichromosome maintenance proteins (MCM)2-7 and proliferating cell nuclear antigen were precisely localized, and the DNA copy number along the third chromosome chorion amplicon was quantified during multiple developmental stages [21].
  • The Hc protein sequence has evolved from a family of more ordinary chorion genes, in large part through fixation of mutations leading to enhanced cysteine content [22].
  • The mutation of a highly conserved tyrosine residue in the ETS DNA-binding domain of the Elg gene product demonstrates that normal gene function is required for proper follicle cell migration, chorion formation, and nurse cell-chromosome decondensation during Drosophila oogenesis [23].
  • Cholesterol levels were found to be significantly higher in female twins when data was combined over chorion type [24].
  • We have previously shown that one type of high-cysteine silkmoth chorion protein (Hc-A) has evolved from the A family of chorion proteins by radical modifications of the NH2-terminal and COOH-terminal polypeptide arms: most of the arm sequences have been deleted, while short cysteine- and glycine-containing repeats have expanded into long arrays [25].

Gene context of Chorion

  • In the ovary, the sub-nuclear distribution of ORC1 shifts during a developmentally regulated switch from endoreplication of the entire genome to amplification of the chorion gene clusters [26].
  • The parent construct supported 18- to 20-fold amplification, and contained the 320 bp ACE3, the approximately 1.2 kb S18 chorion gene and the 840 bp ori-beta [27].
  • Antibody to the origin recognition complex subunit 2 (ORC2) recognizes large foci that localize to the endogenous chorion gene loci and to active transgenic constructs at the beginning of amplification [27].
  • Combined activities of Gurken and decapentaplegic specify dorsal chorion structures of the Drosophila egg [28].
  • E2f2 mutant females display a 50% reduction in chorion gene amplification, and lay poorly viable eggs with a defective chorion [29].

Analytical, diagnostic and therapeutic context of Chorion


  1. Increased fetoplacental active renin production in pregnancy-induced hypertension. Brar, H.S., Kjos, S.L., Dougherty, W., Do, Y.S., Tam, H.B., Hsueh, W.A. Am. J. Obstet. Gynecol. (1987) [Pubmed]
  2. High levels of fetal membrane activin beta A and activin receptor IIB mRNAs and augmented concentration of amniotic fluid activin A in women in term or preterm labor. Petraglia, F., Di Blasio, A.M., Florio, P., Gallo, R., Genazzani, A.R., Woodruff, T.K., Vale, W. J. Endocrinol. (1997) [Pubmed]
  3. Prolonged hypoxia upregulates vascular endothelial growth factor messenger RNA expression in ovine fetal membranes and placenta. Matsumoto, L.C., Bogic, L., Brace, R.A., Cheung, C.Y. Am. J. Obstet. Gynecol. (2002) [Pubmed]
  4. Chronic polyhydramnios is a syndrome with a lactogen receptor defect in the chorion laeve. Healy, D.L., Herington, A.C., O'Herlihy, C. British journal of obstetrics and gynaecology. (1985) [Pubmed]
  5. Increased apoptosis of human fetal membranes in rupture of the membranes and chorioamnionitis. Kataoka, S., Furuta, I., Yamada, H., Kato, E.H., Ebina, Y., Kishida, T., Kobayashi, N., Fujimoto, S. Placenta (2002) [Pubmed]
  6. Fetal fibronectin in cervical and vaginal secretions as a predictor of preterm delivery. Lockwood, C.J., Senyei, A.E., Dische, M.R., Casal, D., Shah, K.D., Thung, S.N., Jones, L., Deligdisch, L., Garite, T.J. N. Engl. J. Med. (1991) [Pubmed]
  7. RNP particles at splice junction sequences on Drosophila chorion transcripts. Osheim, Y.N., Miller, O.L., Beyer, A.L. Cell (1985) [Pubmed]
  8. Chorion cDNA clones of D. melanogaster and their use in studies of sequence homology and chromosomal location of chorion genes. Griffin-Shea, R., Thireos, G., Kafatos, F.C., Petri, W.H., Villa-Komaroff, L. Cell (1980) [Pubmed]
  9. Drosophila bearing the ocelliless mutation underproduce two major chorion proteins both of which map near this gene. Spradling, A.C., Waring, G.L., Mahowald, A.P. Cell (1979) [Pubmed]
  10. Essential role of Mash-2 in extraembryonic development. Guillemot, F., Nagy, A., Auerbach, A., Rossant, J., Joyner, A.L. Nature (1994) [Pubmed]
  11. Sequence discrimination by alternatively spliced isoforms of a DNA binding zinc finger domain. Gogos, J.A., Hsu, T., Bolton, J., Kafatos, F.C. Science (1992) [Pubmed]
  12. Expression and localization of human oxytocin receptor mRNA and its protein in chorion and decidua during parturition. Takemura, M., Kimura, T., Nomura, S., Makino, Y., Inoue, T., Kikuchi, T., Kubota, Y., Tokugawa, Y., Nobunaga, T., Kamiura, S. J. Clin. Invest. (1994) [Pubmed]
  13. DNA replication control through interaction of E2F-RB and the origin recognition complex. Bosco, G., Du, W., Orr-Weaver, T.L. Nat. Cell Biol. (2001) [Pubmed]
  14. The role of ACE3 in Drosophila chorion gene amplification. Orr-Weaver, T.L., Johnston, C.G., Spradling, A.C. EMBO J. (1989) [Pubmed]
  15. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. Remus, D., Beall, E.L., Botchan, M.R. EMBO J. (2004) [Pubmed]
  16. Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Gurtner, G.C., Davis, V., Li, H., McCoy, M.J., Sharpe, A., Cybulsky, M.I. Genes Dev. (1995) [Pubmed]
  17. Inhibition of vascular endothelial growth factor receptor 2-mediated endothelial cell activation by Axl tyrosine kinase receptor. Gallicchio, M., Mitola, S., Valdembri, D., Fantozzi, R., Varnum, B., Avanzi, G.C., Bussolino, F. Blood (2005) [Pubmed]
  18. Mrj encodes a DnaJ-related co-chaperone that is essential for murine placental development. Hunter, P.J., Swanson, B.J., Haendel, M.A., Lyons, G.E., Cross, J.C. Development (1999) [Pubmed]
  19. Mobilization of arachidonic acid from specific glycerophospholipids of human fetal membranes during early labor. Okita, J.R., MacDonald, P.C., Johnston, J.M. J. Biol. Chem. (1982) [Pubmed]
  20. 92-kd type IV collagenase (matrix metalloproteinase-9) activity in human amniochorion increases with labor. Vadillo-Ortega, F., González-Avila, G., Furth, E.E., Lei, H., Muschel, R.J., Stetler-Stevenson, W.G., Strauss, J.F. Am. J. Pathol. (1995) [Pubmed]
  21. Visualization of replication initiation and elongation in Drosophila. Claycomb, J.M., MacAlpine, D.M., Evans, J.G., Bell, S.P., Orr-Weaver, T.L. J. Cell Biol. (2002) [Pubmed]
  22. Origin of evolutionary novelty in proteins: how a high-cysteine chorion protein has evolved. Rodakis, G.C., Kafatos, F.C. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  23. Ets oncogene-related gene Elg functions in Drosophila oogenesis. Schulz, R.A., The, S.M., Hogue, D.A., Galewsky, S., Guo, Q. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  24. Effects of chorion type on variation in cord blood cholesterol of monozygotic twins. Corey, L.A., Kang, K.W., Christian, J.C., Norton, J.A., Harris, R.E., Nance, W.E. Am. J. Hum. Genet. (1976) [Pubmed]
  25. DNA sequence transfer between two high-cysteine chorion gene families in the silkmoth Bombyx mori. Iatrou, K., Tsitilou, S.G., Kafatos, F.C. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  26. E2F mediates developmental and cell cycle regulation of ORC1 in Drosophila. Asano, M., Wharton, R.P. EMBO J. (1999) [Pubmed]
  27. Sequence requirements for function of the Drosophila chorion gene locus ACE3 replicator and ori-beta origin elements. Zhang, H., Tower, J. Development (2004) [Pubmed]
  28. Combined activities of Gurken and decapentaplegic specify dorsal chorion structures of the Drosophila egg. Peri, F., Roth, S. Development (2000) [Pubmed]
  29. Drosophila E2f2 promotes the conversion from genomic DNA replication to gene amplification in ovarian follicle cells. Cayirlioglu, P., Bonnette, P.C., Dickson, M.R., Duronio, R.J. Development (2001) [Pubmed]
  30. Nucleotide sequence of an unusual regionally expressed silkmoth chorion RNA: predicted primary and secondary structures of an architectural protein. Regier, J.C., Pacholski, P. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  31. Silkmoth chorion proteins. Their diversity, amino acid composition, and the NH-terminal sequence of one component. Regier, J.C., Kafatos, F.C., Kramer, K.J., Heinrikson, R.L., Keim, P.S. J. Biol. Chem. (1978) [Pubmed]
  32. Steroid regulation of prostaglandin dehydrogenase activity and expression in human term placenta and chorio-decidua in relation to labor. Patel, F.A., Clifton, V.L., Chwalisz, K., Challis, J.R. J. Clin. Endocrinol. Metab. (1999) [Pubmed]
  33. Prostaglandin endoperoxide H synthase (PGHS) activity and PGHS-1 and -2 messenger ribonucleic acid abundance in human chorion throughout gestation and with preterm labor. Mijovic, J.E., Zakar, T., Nairn, T.K., Olson, D.M. J. Clin. Endocrinol. Metab. (1998) [Pubmed]
  34. Inhibin and activin in human fetal membranes: evidence for a local effect on prostaglandin release. Petraglia, F., Anceschi, M.M., Calzá, L., Garuti, G.C., Fusaro, P., Giardino, L., Genazzani, A.R., Vale, W. J. Clin. Endocrinol. Metab. (1993) [Pubmed]
WikiGenes - Universities