The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Specific sequences in the N and C termini of apolipoprotein A-IV modulate its conformation and lipid association.

Apolipoprotein (apoA-IV) is a 376-residue exchangeable apolipoprotein that may play a number of important roles in lipid metabolism, including chylomicron assembly, reverse cholesterol transport, and appetite regulation. In vivo, apoA-IV exists in both lipid-poor and lipid-associated forms, and the balance between these states may determine its function. We examined the structural elements that modulate apoA-IV lipid binding by producing a series of deletion mutants and determining their ability to interact with phospholipid liposomes. We found that the deletion of residues 333-343 strongly increased the lipid association rate versus native apoA-IV. Additional mutagenesis revealed that two phenylalanine residues at positions 334 and 335 mediated this lipid binding inhibitory effect. We also observed that residues 11-20 in the N terminus were required for the enhanced lipid affinity induced by deletion of the C-terminal sequence. We propose a structural model in which these sequences can modulate the conformation and lipid affinity of apoA-IV.[1]


  1. Specific sequences in the N and C termini of apolipoprotein A-IV modulate its conformation and lipid association. Pearson, K., Tubb, M.R., Tanaka, M., Zhang, X.Q., Tso, P., Weinberg, R.B., Davidson, W.S. J. Biol. Chem. (2005) [Pubmed]
WikiGenes - Universities