The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cerebral ischemia and brain histamine.

Cerebral ischemia induces excess release of glutamate and an increase in the intracellular Ca(2+) concentration in neurons, which provokes enzymatic process leading to irreversible neuronal injury. Histamine plays a role as a neurotransmitter in the mammalian brain, and histamine release from nerve endings is enhanced in ischemia by facilitation of histaminergic activity. Dissimilar to ischemia-induced release of glutamate, histamine release is gradual and long lasting. The enhancement may contribute to neuroprotection against ischemic damage, because suppression of histaminergic activity aggravates the histologic outcome caused by ischemia. Preischemic administration of histamine (i.c.v.) suppresses ischemic release of glutamate and ameliorates neuronal damage, whereas blockade of central histamine H(2) receptors aggravates ischemic injury. These suggest that histamine provides beneficial effects against ischemic damage through histamine H(2) receptors, when administered before induction of ischemia. Postischemic loading with histidine, a precursor of histamine, alleviates both brain infarction and delayed neuronal death. Since the alleviation is abolished by blockade of central histamine H(2) receptors, facilitation of central histamine H(2) action caused by histidine may prevent reperfusion injury after ischemic events. Because the ischemia-induced increase in the glutamate level rapidly resumes after reperfusion of cerebral blood flow, beneficial effects caused by postischemic loading with histidine may be due to other mechanisms besides suppression of excitatory neurotransmitter release. Anti-inflammatory action by histamine H(2) receptor stimulation is a likely mechanism responsible for the improvement.[1]

References

  1. Cerebral ischemia and brain histamine. Adachi, N. Brain Res. Brain Res. Rev. (2005) [Pubmed]
 
WikiGenes - Universities