The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ligand binding at the transthyretin dimer-dimer interface: structure of the transthyretin-T4Ac complex at 2.2 Angstrom resolution.

The crystal structure of the complex of human transthyretin (hTTR) with 3,3',5,5'-tetraiodothyroacetic acid (T4Ac) has been determined to 2.2 Angstrom resolution. The complex crystallizes in the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 43.46, b = 85.85, c = 65.44 Angstrom. The structure was refined to R = 17.3% and R(free) = 21.9% for reflections without any sigma-cutoff. T4Ac is bound in both the forward and the reverse mode in the two binding sites of hTTR. In the forward orientation, T4Ac binds in a position similar to that described for thyroxine (T4) in the orthorhombic hTTR-T4 complex. In this orientation, the iodine substituents of the phenolic ring are bound in the P3'/P2 halogen pockets. In the reverse orientation, which is the major binding mode of T4Ac, the ligand is bound deep in the TTR channel, with the carboxylic group bound in the P3' pocket and forming simultaneous polar interactions with the residues constituting the two hormone-binding sites. Such interactions of a thyroxine-analogue ligand bound in the reverse mode have never been observed in TTR complexes previously.[1]

References

 
WikiGenes - Universities