The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Tetrac     2-[4-(4-hydroxy-3,5-diiodo- phenoxy)-3,5...

Synonyms: CHEMBL549748, SureCN365951, AG-G-54444, BSPBio_002144, KBioGR_001140, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tetraiodothyroacetic acid

  • The results showed clearly, however, that Tetrac is less efficient for all parameters studied, namely induction of cardiac hypertrophy, alpha-myosin heavy chain mRNA, monodeiodinase type 1 activity and mRNA levels of the sarcoplasmic SERCA 2a [1].
  • Euthyroid sick syndrome is possibly due to an increase in Triac (a T3 analogue) and/or Tetrac (a T4 analogue) [2].
  • Triac and/or Tetrac possibly feed back on the pituitary/hypothalamus region and cause a secondary hypothyroidism [2].
 

High impact information on Tetraiodothyroacetic acid

 

Biological context of Tetraiodothyroacetic acid

 

Anatomical context of Tetraiodothyroacetic acid

 

Associations of Tetraiodothyroacetic acid with other chemical compounds

 

Gene context of Tetraiodothyroacetic acid

 

Analytical, diagnostic and therapeutic context of Tetraiodothyroacetic acid

  • Due to its rapid metabolic clearance rate, Triac is not suitable for TSH suppression and therefore the slowly metabolized 3,5,3',5'-tetraiodothyroacetic acid (Tetrac), the precursor of Triac, was studied [1].

References

  1. Differences between the effects of thyroxine and tetraiodothyroacetic acid on TSH suppression and cardiac hypertrophy. Lameloise, N., Siegrist-Kaiser, C., O'Connell, M., Burger, A. Eur. J. Endocrinol. (2001) [Pubmed]
  2. Possible etiology for euthyroid sick syndrome. Carlin, K., Carlin, S. Med. Hypotheses (1993) [Pubmed]
  3. Rat liver iodothyronine monodeiodinase. Evaluation of the iodothyronine ligand-binding site. Koehrle, J., Auf'mkolk, M., Rokos, H., Hesch, R.D., Cody, V. J. Biol. Chem. (1986) [Pubmed]
  4. Thyroid hormone causes mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Tang, H.Y., Lin, H.Y., Zhang, S., Davis, F.B., Davis, P.J. Endocrinology (2004) [Pubmed]
  5. Disparate effects of thyroid hormone on actions of epidermal growth factor and transforming growth factor-alpha are mediated by 3',5'-cyclic adenosine 5'-monophosphate-dependent protein kinase II. Shih, A., Zhang, S., Cao, H.J., Tang, H.Y., Davis, F.B., Davis, P.J., Lin, H.Y. Endocrinology (2004) [Pubmed]
  6. Thyroid hormone analogues potentiate the antiviral action of interferon-gamma by two mechanisms. Lin, H.Y., Thacore, H.R., Davis, F.B., Davis, P.J. J. Cell. Physiol. (1996) [Pubmed]
  7. Uptake of 3,3',5,5'-tetraiodothyroacetic acid and 3,3',5'-triiodothyronine in cultured rat anterior pituitary cells and their effects on thyrotropin secretion. Everts, M.E., Visser, T.J., Moerings, E.P., Tempelaars, A.M., van Toor, H., Docter, R., de Jong, M., Krenning, E.P., Hennemann, G. Endocrinology (1995) [Pubmed]
  8. High-affinity binding of tetraiodothyroacetic acid by a prealbumin in normal rabbit serum. Burger, A., Reinharz, A., Ingbar, S.H. Endocrinology (1975) [Pubmed]
  9. Acetylation of nuclear hormone receptor superfamily members: thyroid hormone causes acetylation of its own receptor by a mitogen-activated protein kinase-dependent mechanism. Lin, H.Y., Hopkins, R., Cao, H.J., Tang, H.Y., Alexander, C., Davis, F.B., Davis, P.J. Steroids (2005) [Pubmed]
  10. Biochemical characteristics of iodothyronine monodeiodination by rat liver microsomes: the interaction between iodothyronine substrate analogs and the ligand binding site of the iodothyronine deiodinase resembles that of the TBPA-iodothyronine ligand binding. Köhrle, J., Hesch, R.D. Horm. Metab. Res. Suppl. (1984) [Pubmed]
  11. Steady state organ distribution and metabolism of thyroxine and 3,5,3'-triiodothyronine in intestines, liver, kidneys, blood, and residual carcass of the rat in vivo. Nguyen, T.T., DiStefano, J.J., Yamada, H., Yen, Y.M. Endocrinology (1993) [Pubmed]
  12. Characterization of thyroid hormone stimulation of uridine uptake by rat pituitary tumor cells. Halpern, J., Hinkle, P.M. Endocrinology (1984) [Pubmed]
  13. Evidence for the presence of nuclear 3,5,3'-triiodothyronine receptors in secondary cultures of pure rat oligodendrocytes. Yusta, B., Besnard, F., Ortiz-Caro, J., Pascual, A., Aranda, A., Sarliève, L. Endocrinology (1988) [Pubmed]
  14. High-affinity binding of reverse T3 and tetrac in nuclei of human lymphocytes. Lemarchand-Béraud, T., Holm, A.C., Bornand, G., Burger, A. Acta Endocrinol. (1978) [Pubmed]
  15. Effect of theophylline on binding of triiodothyronine, thyroxine, thyroxamine, tetraiodothyroacetic acid and cortisol in the cytosol of human leukocytes. Felt, V., Ploc, I. Endokrinologie. (1982) [Pubmed]
  16. In vitro effect of thyroxine on cholinergic neurotransmission in rat sympathetic superior cervical ganglion. Landa, M.E., González Burgos, G., Cardinali, D.P. Neuroendocrinology (1991) [Pubmed]
  17. Binding of L-triiodothyronine to isolated rat liver and kidney nuclei under various circumstances. Docter, R., Visser, T.J., Stinis, J.T., van den Hout-Goemaat, N.L., Hennemann, G. Acta Endocrinol. (1976) [Pubmed]
  18. Effect of amiodarone on non-deiodinative pathway of thyroid hormone metabolism. Kannan, R., Chopra, I.J., Ookhtens, M., Singh, B.N. Acta Endocrinol. (1990) [Pubmed]
  19. Ligand binding at the transthyretin dimer-dimer interface: structure of the transthyretin-T4Ac complex at 2.2 Angstrom resolution. Neumann, P., Cody, V., Wojtczak, A. Acta Crystallogr. D Biol. Crystallogr. (2005) [Pubmed]
  20. Complex of rat transthyretin with tetraiodothyroacetic acid refined at 2.1 and 1.8 A resolution. Muzioł, T., Cody, V., Luft, J.R., Pangborn, W., Wojtczak, A. Acta Biochim. Pol. (2001) [Pubmed]
  21. Demonstration of putative thyroid hormone receptor in the brain nuclei of Singi fish, Heteropneustes fossilis (Bloch). Dasmahapatra, A.K., De, S., Medda, A.K. Gen. Comp. Endocrinol. (1991) [Pubmed]
 
WikiGenes - Universities