The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Herpes simplex virus type 1-encoded glycoprotein C contributes to direct coagulation factor X-virus binding.

The HSV1 (herpes simplex virus type 1) surface has been shown recently to initiate blood coagulation by FVIIa (activated Factor VII)-dependent proteolytic activation of FX (Factor X). At least two types of direct FX-HSV1 interactions were suggested by observing that host cell-encoded tissue factor and virus-encoded gC (glycoprotein C) independently enhance FVIIa function on the virus. Using differential sedimentation to separate bound from free 125I-ligand, we report in the present study that, in the presence of Ca2+, FX binds directly to purified wild-type HSV1 with an apparent dissociation constant (K(d)) of 1.5+/-0.4 muM and 206+/-24 sites per virus at saturation. The number of FX-binding sites on gC-deficient virus was reduced to 43+/-5, and the remaining binding had a lower K(d) (0.7+/-0.2 microM), demonstrating an involvement of gC. Engineering gC back into the deficient strain or addition of a truncated soluble recombinant form of gC (sgC), increased the K(d) and the number of binding sites. Consistent with a gC/FX stoichiometry of approximately 1:1, 121+/-6 125I-sgC molecules were found to bind per wild-type HSV1. In the absence of Ca2+, the number of FX-binding sites on the wild-type virus was similar to the gC-deficient strain in the presence of Ca2+. Furthermore, in the absence of Ca2+, direct sgC binding to HSV1 was insignificant, although sgC was observed to inhibit the FX-virus association, suggesting a Ca2+-independent solution-phase FX-sgC interaction. Cumulatively, these data demonstrate that gC constitutes one type of direct FX-HSV1 interaction, possibly providing a molecular basis for clinical correlations between recurrent infection and vascular pathology.[1]

References

  1. Herpes simplex virus type 1-encoded glycoprotein C contributes to direct coagulation factor X-virus binding. Livingston, J.R., Sutherland, M.R., Friedman, H.M., Pryzdial, E.L. Biochem. J. (2006) [Pubmed]
 
WikiGenes - Universities