The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A slowed classical pathway rather than kiss-and-run mediates endocytosis at synapses lacking synaptojanin and endophilin.

The extent to which a "kiss-and-run" mode of endocytosis contributes to synaptic-vesicle recycling remains controversial. The only genetic evidence for kiss-and-run at the synapse comes from mutations in the genes encoding synaptojanin and endophilin, proteins that together function to uncoat vesicles in classical clathrin-mediated endocytosis. Here we have characterized the endocytosis that persists in null alleles of Drosophila synaptojanin and endophilin. In response to high-frequency stimulation, the synaptic-vesicle pool can be reversibly depleted in these mutants. Recovery from this depletion is slow and indicates the persistence of an impaired form of classical endocytosis. Steady-state exocytosis rates reveal that endocytosis saturates in mutant neuromuscular terminals at approximately 80 vesicles/s, 10%-20% of the wild-type rate. Analyses of quantal size, FM1-43 loading, and dynamin function further demonstrate that, even in the absence of synaptojanin or endophilin, vesicles undergo full fusion and re-formation. Therefore, no genetic evidence remains to indicate that synaptic vesicles undergo kiss-and-run.[1]

References

 
WikiGenes - Universities