The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Innate defences against methicillin-resistant Staphylococcus aureus (MRSA) infection.

The innate immune system is the primary defence against bacterial infection. Among the factors involved in innate defence, anti-microbial peptides produced by humans have recently attracted attention due to their relevance to some diseases and also to the development of new chemotherapeutic agents. Staphylococcus aureus is one of the major human pathogens, causing a variety of infections from suppurative disease to food poisoning. Methicillin-resistant S. aureus (MRSA) is a clinical problem and with the recent emergence of a vancomycin-resistant strain, this will pose serious problems in the near future. In investigating the molecular biology of S. aureus infections to develop new chemotherapeutic agents against MRSA infections, knowledge of the interaction of innate anti-microbial peptides with S. aureus is important. In vitro and in vivo experiments demonstrate that exposure of S. aureus to host cells can induce the anti-microbial peptides beta-defensin-2 (hBD2), hBD3, and LL37/CAP18. The induction level of these peptides differs among strains, as does the susceptibility of the strains, with MRSA strains exhibiting lower susceptibility. In summary, the susceptibility of S. aureus strains, including MRSA strains, to components of the innate immune system varies, with the MRSA strains showing more resistance to both innate immune factors and chemotherapeutic agents.[1]

References

  1. Innate defences against methicillin-resistant Staphylococcus aureus (MRSA) infection. Komatsuzawa, H., Ouhara, K., Yamada, S., Fujiwara, T., Sayama, K., Hashimoto, K., Sugai, M. J. Pathol. (2006) [Pubmed]
 
WikiGenes - Universities